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Genomic and metagenomic surveys of hydrogenase
distribution indicate H, is a widely utilised energy
source for microbial growth and survival
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Recent physiological and ecological studies have challenged the long-held belief that microbial
metabolism of molecular hydrogen (H,) is a niche process. To gain a broader insight into the
importance of microbial H, metabolism, we comprehensively surveyed the genomic and metage-
nomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution
of H,. The protein sequences of 3286 non-redundant putative hydrogenases were curated from
publicly available databases. These metalloenzymes were classified into multiple groups based on
(1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and
(4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase,
three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were
identified. We predict that this hydrogenase diversity supports H,-based respiration, fermentation and
carbon fixation processes in both oxic and anoxic environments, in addition to various H,-sensing,
electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were
identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral
acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic
and host-associated metagenomes in varying proportions, indicating a broad ecological distribution
and utilisation. Oxygen content (pO,) appears to be a central factor driving the phylum- and
ecosystem-level distribution of these genes. In addition to compounding evidence that H, was the
first electron donor for life, our analysis suggests that the great diversification of hydrogenases has
enabled H, metabolism to sustain the growth or survival of microorganisms in a wide range of
ecosystems to the present day. This work also provides a comprehensive expanded system for
classifying hydrogenases and identifies new prospects for investigating H, metabolism.
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Introduction

Molecular hydrogen (H,) has several physical prop-
erties desirable for biological systems, notably its
redox potential (E°=-0.42V) and diffusion coeffi-
cient (4x107° m*s~'). Microorganisms are able
to harness these properties by consuming and
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producing H, using specialised metalloenzymes
called hydrogenases (Schwartz et al., 2013). There
are three phylogenetically unrelated classes of
hydrogenase distinguishable based on the metal
content of their H,-binding sites: the [NiFe]-, [FeFe]-
and [Fe]-hydrogenases (Volbeda et al., 1995; Peters
et al., 1998; Shima et al., 2008). H, oxidation by such
enzymes yields low-potential electrons that are
transduced through respiratory chains or used to
fix inorganic carbon. In contrast, H, evolution
efficiently dissipates excess reductant as a diffusible
gas during microbial fermentation and photo-
biological processes (Schwartz et al., 2013). Certain
hydrogenases are also part of low-potential
ion-translocating complexes that use protons as terminal
electron acceptors (Buckel and Thauer, 2013).
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Since the discovery of microbial H, oxidation in the
1900s (Kaserer, 1906; Stephenson and Stickland,
1931), H, metabolism has been observed in multiple
bacterial, archaeal and eukaryotic phyla. It is
increasingly recognised that H, metabolism is
important for a wide range of microorganisms:
lithotrophs and phototrophs, respirers and fermenters
and aerobes and anaerobes alike (Vignais and
Billoud, 2007; Schwartz et al., 2013; Peters et al.,
2014). Furthermore, it is widely hypothesised that H,
was the primordial electron donor, suggesting
early and sustained evolutionary importance (Lane
et al., 2010).

Several recent studies demonstrated that micro-
bial H, metabolism is more widespread than
previously reported. It was recently shown that
some aerobic soil actinobacteria and acidobacteria
persist by scavenging H, from the lower atmosphere
(Constant et al., 2010; Greening et al., 2014,
2015a, b), overturning long-held beliefs that hydro-
gen metabolism is restricted to low O,, high H,
environments and highlighting the importance of
H, for survival in addition to growth (Greening and
Cook, 2014). Biochemists have simultaneously
elucidated mechanisms dependent on reversed
electron flow that enable certain hydrogenases to
function in the presence of the oxygen (traditionally
an inhibitor of their active sites) (Fritsch et al., 2011;
Shomura et al.,, 2011; Horch et al., 2015). In
anaerobic systems, ultra-minimalistic hydroge-
nase-containing respiratory chains have been
described that efficiently generate energy within
oligotrophic environments (Kim et al., 2010; Lim
et al., 2014). In parallel, the discovery of electron
bifurcation has expanded our understanding of how
energy is conserved in anaerobic processes such as
cellulolytic fermentation, acetogenesis and metha-
nogenesis (Schut and Adams, 2009; Kaster et al.,
2011; Buckel and Thauer, 2013; Schuchmann and
Muller, 2014). Other themes, including H, sensing
within anaerobes (Zheng et al., 2014) and H,
fermentation in aerobes (Berney et al., 2014), are
emerging.

Despite this progress, there remains much to be
discovered about microbial H, metabolism on both
the microscopic and macroscopic levels. Most
studies on microbial H, metabolism focus on only a
few branches of the hydrogenase phylogenetic tree
and a small subset of organisms within the universal
tree of life. Physiological and biochemical character-
isations have focussed on model organisms
from within five phyla, Proteobacteria, Firmicutes,
Cyanobacteria, Euryarchaeota and Chlorophyta
(Schwartz et al., 2013; Lubitz et al., 2014). Further-
more, detailed biochemical information and atomic-
resolution structures are available for only a subset of
hydrogenases (Volbeda et al., 1995; Peters et al.,
1998; Shima et al., 2008; Fritsch et al., 2011; Mills
et al, 2013). Although the contribution of H,
metabolism to total ecosystem processes is recog-
nised in some environments (for example, anoxic
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sediments, animal guts and hydrothermal vents;
Vignais and Billoud, 2007; Schwartz et al., 2013),
the role of hydrogenases in general soil and aquatic
ecosystems remains largely unresolved (Barz et al.,
2010; Constant et al., 2011; Beimgraben et al., 2014;
Greening et al., 2015b). Consequently, the influence
of H, evolution and consumption on community
structuring and global biogeochemical cycling
requires further investigation (Schwartz et al., 2013;
Greening et al., 2015b).

Hydrogenase gene surveys are vital for under-
standing microbial H, metabolism at the global
scale. Current knowledge on the evolution and
diversity of hydrogenases relies heavily on the
progressive surveys conducted by Wu and Vignais
(Wu and Mandrand, 1993; Vignais et al., 2001;
Vignais and Billoud, 2007); these studies revealed
that the primary sequences and subunit architec-
tures of [NiFe]- and [FeFe]-hydrogenases have
diversified to enable them to adopt a wide range
of physiological roles (whereas the [Fe]-hydroge-
nase is constrained to a single function). In the eight
years following these studies (Vignais and Billoud,
2007), the emergence of sequencing technologies
has resulted in the rapid expansion of genome and
metagenome sequence data. Genomes are now
available for a far greater range of organisms,
spanning model laboratory specimens, representa-
tives of dominant environmental phyla, and poorly
described ‘Microbial Dark Matter’ (Wu et al., 2009;
Rinke et al., 2013). Furthermore, metagenomes
enable the metabolic capability of entire commu-
nities to be described in silico (Tringe et al., 2005;
Morales and Holben, 2011; Wrighton et al., 2012). In
this work, we used publicly available genome and
metagenome resources to comprehensively analyse
the distribution of hydrogenases. Our findings
suggest that H, metabolism is more diverse and
widespread on both the taxonomic and community
levels than previously reported.

Materials and methods

Hydrogenase sequence retrieval

Amino acid sequences of all non-redundant puta-
tive hydrogenase catalytic subunits represented in
the National Center for Biotechnology Information
(NCBI) Reference Sequence (RefSeq) (Pruitt et al.,
2007) and Joint Genome Institute (JGI) Microbial
Dark Matter (MDM) (Rinke et al., 2013) databases
were retrieved by Protein BLAST (Altschul et al.,
1990) during August 2014. The retrieved sequences
were verified as hydrogenase encoding through
screening for the presence of conserved cysteine
residues required to ligate H,-binding metal
centres (L1 and L2 motifs for [NiFe]-hydrogenases
(Vignais and Billoud, 2007); P1, P2 and P3 motifs
for [FeFel-hydrogenases (Vignais and Billoud,
2007); and Cys176 in [Fel]-hydrogenases (Shima
et al., 2008)). The analysis omitted protein families



homologous to [NiFe]-hydrogenases (Ehr/Mbx,
NuoD), [FeFe]-hydrogenases (Narf/Narlp) and
[Fe]-hydrogenases (HmdII) that appear to lack the
capacity to metabolise H,. Our analysis did not
include nitrogenases, alkaline phosphatases, formate
dehydrogenases and carbon monoxide dehydro-
genases that have been shown to catalyse side-
reactions resulting in H, oxidation or evolution
(Schwartz et al., 2013).

Hydrogenase classification and analysis

Protein sequences encoding the catalytic subunits
([NiFe]-hydrogenases, [Fel]-hydrogenases) or catalytic
domains ([FeFe]-hydrogenases) of hydrogenases were
aligned using the ClustalW (Larkin et al., 2007) and
MUSCLE (Edgar, 2004) algorithms. Evolutionary rela-
tionships were analysed using neighbour-joining
phylogenetic trees (Saitou and Nei, 1987) constructed
with MEGA6 (Tamura et al., 2013). All trees were
bootstrapped using 500 replicates and were rooted
with ancestral sequences where available. The robust-
ness of the analysis was confirmed by varying the
number of ingroup sequences tested and the nature of
the outgroup sequence used. The Microbial Genomic
Context Viewer (MGcV) was used to compare genome
regions  encoding  homologous  hydrogenases
(Overmars et al., 2013). Domains were predicted by
searching the Conserved Domain Database (CDD)
(Marchler-Bauer et al, 2011) and using multiple
sequence alignments to identify signature conserved
residues. WebLogo (Crooks et al., 2004) was used
to visualise conserved metal-binding motifs forming
the active sites and redox centres. Using a combina-
tion of the information derived from these methods,
the [NiFe]- and [FeFe]-hydrogenases were further
divided into phylogenetically distinct groups and
subgroups.

Metagenome analysis

Metagenome sequence libraries derived from 10
ecosystems including soil (farmland, forest, perma-
frost, bog), gut (termite, human) and water (fresh
water, hot spring, coastal upwelling, deep ocean)
environments were identified from publicly
available databases. For each ecosystem, two
libraries were selected. All selected libraries were
sequenced with paired-end reads on an Illumina
(San Diego, CA, USA) platform and represented read
sizes of between 201 and 280 nucleotides. BLAST
(Altschul et al., 1990) analyses were performed using
a local BLAST database containing the protein
sequences of the catalytic subunit ([NiFe]-hydroge-
nases, [Fe]-hydrogenases) or catalytic domain
([FeFe]-hydrogenases) of all sequenced hydrogenases
(curated as described above). Low complexity
regions for all reference sequences were masked
using the SEG algorithm (Wootton and Federhen,
1996) of BLAST+ (Camacho et al.,, 2008) and a
reference BLAST database was created. All
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metagenome libraries were randomly subsampled
to an equal depth (1 million reads) and read length
>201 nucleotides before analyses. A translated
BLAST screening of all subsamples was performed
using blastx (word size 3 and e-value 10). To
minimise false positives, hits within the initial
screen were sieved by removing any result with a
minimum percentage identity 60% and minimum
query coverage 40 amino acids. Identified reads for
each class are recorded as relative percentage
abundance.

Results

An expanded hydrogenase classification scheme
predictive of biological function

The first aim of this work was to identify and
classify all putative hydrogenases represented in
public databases. Initially, we retrieved non-
redundant sequences encoding the catalytic subunits
of all hydrogenases in the NCBI database and
verified that 3286 of them contained the sufficient
residues required to bind their metal centres
(Supplementary Tables S1 and S2). In order to
develop the classification scheme (Table 1), we
correlated the phylogenetic clustering of the hydro-
genases with functional information and predictors.
For all hydrogenases, we analysed: (1) primary
phylogeny to determine their evolutionary relation-
ships (Figure 1), (2) metal- and cofactor-binding
motifs to predict redox centres (Table 2), (3) genetic
organisation to identify probable partner proteins
(Figure 2) and (4) previous literature reports to probe
biochemical characteristics and physiological roles
(Table 1). Integrating this information, we were able
to classify hydrogenases into multiple groups and
subgroups/subtypes likely to have distinct cellular
functions.

All hydrogenases could be classified into eight
previously described major lineages (Vignais and
Billoud, 2007; Calusinska et al., 2010): groups 1 to 4
[NiFe]-hydrogenases, groups A to C [FeFe]-hydro-
genases and [Fel]-hydrogenases. However, pre-
existing classification schemes did not sufficiently
reflect the variety in the functions of the experimen-
tally studied hydrogenases within most of these
groups. For example, existing schemes do not
account for the great heterogeneity in primary
sequence phylogeny, genetic organisation and phy-
siological roles of the group 1 and group 4 [NiFe]-
hydrogenases (Vignais and Billoud, 2007), as well as
the group A [FeFe]-hydrogenases (Calusinska et al.,
2010). In addition, the group 2 [NiFe]-hydrogenases
of recently sequenced Aquificae and methanotrophs
form distinct lineages from the presently recognised
2a and 2b subgroups (Vignais and Billoud, 2007). We
therefore expanded the [NiFe] enzymes into 22
functionally distinct subgroups (groups 1a to 1h, 2a
to 2d, 3a to 3d and 4a to 4f) and the group A [FeFe]-
hydrogenases into four subtypes (groups A1l to A4).
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Table 1 New scheme for the classification of hydrogenases

Group Proposed function References PDB
Group 1: membrane-bound H,-uptake [NiFe]-hydrogenases
Group 1a: Liberates electrons for sulphate, metal, Desulfovibrio vulgaris (Marques et al., 2010) 2WPN
ancestral organohalide and methanogenic heterodisulphide respiration. Includes Desulfomicrobium baculatum (Garcin et al., 1999) 1CC1
[NiFeSe] variants. Methanosarcina mazei (Deppenmeier and
Blaut, 1995)
Group 1b: Liberates electrons for sulphate, fumarate and Desulfovibrio gigas (Volbeda et al., 1995) 1FRV
prototypical nitrate respiration. Wolinella succinogenes (Gross et al., 1998)
Helicobacter pylori (Olson and Maier, 2002)
Group 1c: Liberates electrons primarily for fumarate Escherichia coli (Lukey et al., 2010)
Hyb type respiration. Possibly bidirectional. Salmonella enterica (Maier et al., 2013)
Group 1d: Electron input for aerobic respiration and Ralstonia eutropha (Fritsch et al., 2011) 3RGW
oxygen tolerant  oxygen-tolerant anaerobic respiration. Escherichia coli (Volbeda et al., 2013) 4GD3

Group 1e:
Isp type

Group 1f:

Liberates electrons primarily for sulphur
respiration. Possibly bidirectional.

Unresolved. May liberate electrons to reduce

oxygen protecting reactive oxygen species.

Group 1g:
Crenarchaeota
type

Unresolved. May liberate electrons primarily
for sulphur respiration.

Group 1h/5: Acti- Scavenges electrons from tropospheric H, to

nobacteria type

sustain aerobic respiration during starvation.

Group 2: Cytosolic H,-uptake [NiFe]-hydrogenases

Group 2a:
Cyanobacteria
type

Group 2b:
HK linked

Group 2c:
DGC linked
(putative)

Group 2d:
Aquificae type

Electron input for aerobic respiration and
recycling H, produced by cellular processes
(for example, nitrogenase, fermentation).

Senses H, and activates two-component
cascade controlling hydrogenase expression.

Unknown. Predicted to sense H, and induce
cyclic di-GMP production.

Unknown. May generate reductant for carbon
fixation or have a regulatory role.

Group 3: Cytosolic bidirectional [NiFe]-hydrogenases

Group 3a:
F420 coupled

Group 3b:
NADP coupled

Group 3c:
HDR linked

Group 3d:
NAD coupled

Directly couples oxidation of H, to reduction of
F,,0 during methanogenesis. Reverse reaction
may also occur. Includes [NiFeSe] variants.

Directly couples oxidation of NADPH to evolution
of H,. May be reversible. Some complexes are proposed to have
sulfhydrogenase activity.

Bifurcates electrons from H, to heterodisulphide
and ferredoxin in methanogens without cytochromes.

Directly interconverts electrons between H, and
NAD depending on redox state.

Group 4: Membrane-bound H.-evolving [NiFe]-hydrogenases

Group 4a:
formate
hydrogenlyases

Group 4b:
Mrp linked

Group 4c:
CODH linked

Group 4d:
Eha/Ehb type

Couples oxidation of formate to fermentative
evolution of H,. Hyf-type complexes may
translocate protons via antiporter modules.

Couples oxidation of formate or carbon monoxide
to proton reduction. Generates sodium-motive
force via Mrp antiporter modules.

Forms complex with carbon monoxide
dehydrogenase to anaerobically respire CO
using protons as terminal electron acceptors.

Multimeric complexes that couple H, oxidation to ferredoxin reduction

for anaplerotic (Eha) and
anabolic (Ehb) purposes. H*/Na* driven.
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Aquifex aeolicus (Brugna-Guiral et al., 2003)

Allochromatium vinosum (Ogata et al., 2010) 3MYR
Aquifex aeolicus (Brugna-Guiral et al., 2003)

Thiocapsa roseopersicina (Tengoélics et al., 2014)
Geobacter sulfurreducens (Tremblay and

Lovley, 2012)

Frankia sp. (Leul et al., 2007)

Pyrodictium brockii* (Pihl et al., 1989)
Acidianus ambivalens* (Laska et al., 2003)

Ralstonia eutropha (Schéfer et al., 2013) 5AA5
Mycobacterium smegmatis (Greening et al., 2014)
Streptomyces avermitilis (Constant et al., 2010)

Anabaena sp. (Houchins and Burris, 1981)
Mycobacterium smegmatis (Greening et al., 2014)
Nitrospira moscoviensis* (Koch et al., 2014)

Ralstonia eutropha (Lenz and Friedrich, 1998)
Rhodobacter capsulatus (Vignais et al., 2005)

Uncharacterised.

Aquifex aeolicus (Brugna-Guiral et al., 2003)

Methanothermobacter marburgensis 40MF
(Mills et al., 2013)
Methanosarcina barkeri (Kulkarni et al., 2009)

Pyrococcus furiosus (Ma et al., 1993)
Thermococcus kodakarensis (Kanai et al., 2011)
Mycobacterium smegmatis (Berney et al., 2014)

Methanothermobacter marburgensis (Kaster et al.,
2011)

Anabaena sp. (Houchins and Burris, 1981)
Ralstonia eutropha (Burgdorf et al., 2005)
Thiocapsa roseopersicina (Rakhely et al., 2004)

Escherichia coli McDowall et al., 2014; Andrews
et al., 1997)
Salmonella enterica (Sawers et al., 1986)

Pyrococcus furiosus (Sapra et al., 2003)
Thermococcus onnurineus (Lim et al., 2014)
Thermococcus kodakarensis (Kanai et al., 2011)

Carboxydothermus hydrogenoformans
(Soboh et al., 2002)

Rhodospirillum rubrum (Fox et al., 1996)
Methanococcus maripaludis (Lie et al., 2012;
Porat et al., 2006)
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Group Proposed function References PDB
Group 4e: Couples ferredoxin oxidation to H, evolution. Methanosarcina barkeri (Meuer and Kuettner, 2002)
Ech type This process is physiologically reversible via Desulfovibrio gigas (Morais-Silva et al., 2013)
H*/Na* translocation. Thermoanaerobacter tengcongensis (Soboh et al.,

2004)

Group 4f: Unknown. May couple oxidation of a one-carbon compound to proton Uncharacterised.

Ehf type reduction concurrent with proton translocation. Related to Ehr

(putative) complexes.

[FeFe]-hydrogenases

Group Al: Couples oxidation of ferredoxin to fermentative Clostridium pasteurianum (Peters et al., 1998) 1FEH

prototypical or photobiological evolution of H,. Desulfovibrio desulfuricans (Nicolet et al., 1999) 1HFE
Chlamydomonas reinhardtii (Happe and Naber, = 3LX4
1993)

Group A2: Unknown. Predicted to transfer electrons from H, Uncharacterised.

glutamate to NAD, generating reducing equivalents for

synthase linked  glutamate synthase.

(putative)

Group A3: Reversibly bifurcates electrons from H, to Thermotoga maritima (Schut and Adams, 2009)

bifurcating ferredoxin and NAD in anaerobic bacteria. Acetobacterium woodii (Schuchmann and Miiller,
2012)
Moorella thermoacetica (Wang et al., 2013)

Group A4: Couples formate oxidation to evolution of H.. Clostridium autoethanogenum (Wang et al., 2013)

formate dehydro- Some can also bifurcate electrons from H, to ferredoxin and NADP.

genase linked

Group B:

ancestral of H,.

(putative)

Group C: Unknown. Predicted to sense hydrogen and

sensory (putative) induce cascades via co-transcribed regulatory
elements, for example, kinases and phosphatases.

Unknown. May couple oxidation of ferredoxin to fermentative evolution Uncharacterised.

Thermoanaerobacterium saccharolyticum
(Shaw et al., 2009)
Ruminococcus albus (Zheng et al., 2014)

[Fe]-hydrogenases
HmdI: methenyl- Couples oxidation of H, to reduction of 5,10-methenyltetrahydrometha- Methanocaldococcus jannaschii (Shima et al., 3DAG
H4MPT nopterin in methanogens. Physiologically-reversible and important 2008)
dehydrogenase during nickel limitation. Methanothermobacter thermoautotrophicum

(Afting et al., 1998)

This scheme correlates the phylogenetic clustering of the hydrogenases with their probable functions. The groups A, B and C [FeFe]-hydrogenases
and several subgroups of the [NiFe]-hydrogenases (2a, 2b, 3a, 3b, 3c, 3d) were previously defined (Vignais et al., 2001; Vignais and Billoud, 2007;
Calusinska et al., 2010). The group 1h [NiFe]-hydrogenases have also been defined as the group 5 [NiFe]-hydrogenases; however, this work shows
they are they are descended from other group 1 [NiFe]-hydrogenases. References are provided to structural, biochemical and physiological
characterisations of representative hydrogenases from each subgroup/subtype. Structural characterisations are listed first and Protein Database
(PDB) structures are provided (see Lubitz et al., 2014 for a full list of solved hydrogenase structures). Asterisked organisms have yet to be
sequenced, hence their [NiFe|-hydrogenases are not represented on the phylogenetic trees.

A description of the hydrogenase subgroups/sub-
types defined here is provided in Table 1.

Functional diversity of hydrogenases is reflected in
phylogenetic clustering, genetic organisation and
metal-binding motifs

The hydrogenase classification scheme was devel-
oped primarily on the basis of amino acid sequence
phylogeny (Figure 1). Our analysis shows that the
[NiFe]-hydrogenases are the most diverse and
widespread of the hydrogenases, and can be
initially divided into H,-uptake (groups 1 and 2),
bidirectional (group 3) and H,-evolving (group 4)
clades. On the basis of phylogeny, these enzymes can
be further divided into 22 subgroups (Figure 1;
Supplementary Figures S1-S4) predicted to
have distinct physiological roles described in
Table 1. These subgroups are monophyletic, well
populated (with more than 15 unique sequences) and

statistically supported (with bootstrap values above
0.75), with the exceptions of certain group 4 clades
(see Supplementary Figure S4 legend). On the basis
of phylogeny, three [FeFe]-hydrogenase groups were
defined: a main group represented by fermentative
and bifurcating hydrogenases (group A), an ancestral
group of unknown function (group B) and a group
containing putative sensory hydrogenases (group C)
(Figure 1). However, we were unable to subdivide
these enzymes further by phylogeny alone, owing to
poor bootstrapping of the group A subclades
(Supplementary Figure S5) and lack of functional
information on the group B and C enzymes.

The genetic organisation of the hydrogenases also
serves as a reliable indicator of function between
subgroups. As detailed in Figure 2, genes encoding
hydrogenase structural components are proximal to
those encoding diverse electron-transfer proteins, ion-
translocating subunits, regulatory components,
maturation factors, hypothetical proteins and partner
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Group 1: Membrane-bound H,-
uptake [NiFe]-hydrogenases

Group 1g:

Group 1a: Crenarchaeota-type

Ancestral

Group 1b:

Prototypical Group 1h/5:

Actinobacteria-type

Group 1c:
Hyb-type

Group 1f: Group 1d:

Oxygen- Oxygen-

protecting  Group 1e: tolerant
Isp-type

Group 3: Cytosolic bidirectional
[NiFe]-hydrogenases

Group 3a:

Group 3b:
F420-coupled

NADP-coupled

Group 3d:
Group 3c: NAD-coupled
Heterodisulfide
reductase-linked
[FeFe]-hydrogenases
Group C:
Sensory /),
I Group B:
7 /) Ancestral

Group A:
Prototypical &
Bifurcating ==

Groups 2: Cytosolic H,-
uptake [NiFe]-hydrogenases

Group 2b:
Histidine kinase-
linked regulatory

Group 2c:
Diguanylate cyclase-
linked regulatory

Group 2d:

Aquificae-type Group 2a:

Cyanobacteria-type

Group 4: Membrane-bound H,-
evolving [NiFe]-hydrogenases

Group 4a:
Formate
Group 4b: hydrogenlyases
Mrp-linked
Group 4c: S ——
Carbon monoxide = Group 4f:
dehydrogenase- N Ehf-type
linked —
4
4
Group 4d: Group 4e:
Polyferredoxin- Ech-type
coupled

[Fe]-hydrogenases

5,10-methenyltetrahydro-
methanopterin-coupled

Figure 1 Classification and phylogeny of hydrogenases. These neighbour-joining skeleton trees show the phylogenetic relationships of all
3286 hydrogenases identified in this work. The trees are colour coded by [NiFe]-hydrogenase subgroup and [FeFe]-hydrogenase group.
The nodes separating the major clades are encircled and coloured according to their bootstrap values, that is, black circles for well-
supported nodes (bootstrap values >0.75) and red circles for unsupported nodes (bootstrap values <0.75). Group A [FeFe]-hydrogenases
cannot be reliably subdivided phylogenetically and can only be classified into subtypes based on their genetic organisation. The expanded
trees, including taxon names and bootstrap values, are shown in Supplementary Figures S1 to S6.

enzymes. Although many of these associations have
been previously described (Vignais and Billoud, 2007;
Schwartz et al., 2013), novel findings included the
association of surprising regulatory components (for
example, diguanylate cyclases/phosphodiesterases)
with putative group C [FeFe]-hydrogenases and group
2¢ [NiFe]-hydrogenases. Genome architecture is well
conserved within subgroups of [NiFe]-hydrogenases,
but varies extensively between enzymes of different
functions (Figure 2). Genome architecture is also able
to discriminate the sometimes poorly bootstrapped
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lineages of the group 4 enzymes (Supplementary
Figure S4) and therefore is a valuable hydrogenase
classification tool. Variations in the domain organisa-
tion and probable quaternary structure of the [FeFe]-
hydrogenases were also apparent. On this basis, group
A [FeFe]-hydrogenases can be subdivided into four
functionally distinct subtypes: stand-alone enzymes
(group A1) and those associated with putative
glutamate synthases (group A2), NADH dehydro-
genases (group A3) and formate dehydrogenases
(group A4) (Figure 2).
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[NiFe] L1 motif L2 motif [FeS] proximat [FeS] nedial [FeS] jistar Extension
Group 1a xxRICGVCPxxH SFDPCxxCxxH*  4Cys[4Fe4S] 4Cys[4Fe4S]  3Cys1His/Asp[4Fe4S] Y
Group 1b xQRXxCGVCTxxH xxDPCxACxVH  4Cys[4Fe4S]/3Cys1Asn[4Fe4S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] Y
Group 1c  xQRICGVCTTVH SFDPCxxCAVH  4Cys[4Fe4S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] Y
Group 1d xxRICGVCTxxH SFDPCLACxxH  6Cys[4Fe3S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] Y
Group 1e xxRICGVCTxVH SFDPCxACxxH  4Cys[4Fe4S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] Y
Group 1f xQRxCGVCTxVH SFDPCxACxVH  4Cys[4Fe4S]/3Cys1Asp/Asn[4Fe4S] 3Cys[3Fe4S]  3Cys1His[4Fe4S] Y
Group 1g xSRxCGVCGxxH SFDPCxxCxVH  3Cys1Asp/Asn[4Fe4S] 3Cys[3Fe4S]  3Cys1His/Arg[4Fe4S] Y
Group 1h TSRICGICGDNH SFDPCLPCGVH  3Cys1Asp[4Fe4S] 4Cys[4Fe4S] 3Cys1His[4Fe4S] Y
Group 2a xxRICGICGxxH SFDXCLVCTVH  3Cys1Asn[4Fe4S] 3Cys[3Fe4S] 3Cys1Glul4Fe4S] Y
Group 2b xPRICGICSxSQ  SFDPCMVCTVH 4Cys[4Fe4S] 4Cys[4Fe4S] 3Cys1His[4Fe4S] N
Group 2¢ xxRxCGICxxxH  SxDPCxxCTVH  3Cys1Asp/Glu[4Fe4S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] Y
Group 2d xPRxCGICGxAH xFDxCSVCTTH  3Cys1Asn[4Fe4S] 3Cys[3Fe4S] 3Cys1His[4Fe4S] N
Group 3a xxRxCGxCxxxH xYDxCxSCATH* 4Cys[4Fe4S]/3Cys1Asp[4Fe4S] 4Cys[4Fe4S] 4Cys[4Fe4S] Y
Group 3b  xxRICxxCxxxx xxDPCISCxxH 4Cys[4Fe4S] 4Cys[4Fe4S] 4Cys[4Fe4S] Y
Group 3¢  xxxICGxCxxxH AYDPCxxCATH* 4Cys[4Fe4S] 4Cys[4Fe4S] 4Cys[4Fe4S] Y
Group 3d xxRxCGICPVSH xxDPCLSCxTH 4Cys[4Fe4S] Absent Absent Y
Group 4a xxRVCGICGxxH SLDPCYSCTDR 4Cys[4Fe4S] Absent Absent Y
Group 4b xERICGICxxxH SIDPCxSCTxR 4Cys[4Fe4S] Absent Absent Y
Group 4c xExxCxLCSNxH SIDPCISCXER 4Cys[4Fe4S] Absent Absent N
Group 4d xExxCGICSxxH  xxDPCxxCxxR 4Cys[4Fe4S] Absent Absent Y
Group 4e xxRxCGICSxxH  xIDPCIxCxER 4Cys[4Fe4S] Absent Absent N
Group 4g xERVCGVCxxSH SFELCYxCxDR  4Cys[4Fe4S] Absent Absent N
[FeFe] P1 motif P2 motif P3 motif Domains

Group A1 xTSCCPxWV xxxPCxxKK ExMxCxxGCxxGG M1, M2 or M3

Group A2 FTSCCPxWx CxMPCxAKK ExMACPGGCxxGG M3

Group A3 xTSCC/SPxW xxMPCxAKK ExMxCxGGCxxGG M2, M3 or M4

Group A4 FTSCCPxWV xxMPCTCKx EVMxCPxGCxxGG M2 or M3

Group B xTSC[C]CPxxx FxGPCxAKK ExMxCxGGCxxGP M2 or M3

Group C  IxxxCPxxx FxxPCxxKx ExxxCxxGCxxGP M2P

[Fe] Fe motif

HmdI xTHACTIPT

Abbreviations: N, no; Y, yes.
The consensus motifs surrounding the metal-ligating cysteine residues are shown for each hydrogenase type: L1 and L2 motifs for [NiFe]-
hydrogenases (Vignais and Billoud, 2007); P1, P2 and P3 motifs for [FeFe]-hydrogenases (Vignais and Billoud, 2007); and the Cys176-based
binding motif in [Fe]-hydrogenases (Shima et al., 2008). For [NiFe]|-hydrogenases, the number, configuration and ligands of the iron—sulphur
clusters in the small subunit are listed (the consensus metal-binding motifs for these clusters are listed in Supplementary Table S5). ‘Extension’
refers to whether the C-terminus of the [NiFe]-hydrogenase large subunit is predicted to be cleaved by an endopeptidase during maturation. For
[FeFe]-hydrogenases, the domain structures of the catalytic subunit are shown. Building on existing schemes (Vignais and Billoud, 2007;
Calusinska et al., 2010), we defined the domain organisation of the catalytic subunit as M1 (H-cluster only), M2 (H-cluster, two FeS clusters), M3
(H-cluster, four FeS clusters), M4 (H-cluster, five FeS clusters) or M2P (H-cluster, PAS domain, two FeS clusters) (see also Figure 2 and
Supplementary Table S1).

As

detailed

in Table 2,

the content of the

hydrogenase metal centres also differed between
subgroups, further confirming phylogenetic placements.
Cysteine residues that bind the metal ions of the
catalytic centres of the three types of hydrogenase
are conserved, suggesting the chemical structures of
the active site do not vary. However, the neighbour-
ing residues in the motifs binding the [NiFe]-centre
(L1, L2) and [FeFe]-centre (P1, P2, P3) vary between
subgroups that may influence the catalytic behaviour
of the enzymes. The number, configuration and
ligands of the iron—sulphur clusters of the [NiFe]-
hydrogenase small subunits differ between sub-
groups (Table 2). Nonstandard ligands for iron—
sulphur clusters, that is, Asp, Glu, Asn and His,
were common in the clusters proximal and distal to
the active site. The number of iron—sulphur clusters

associated with the [FeFe]-hydrogenase catalytic
domain also varies (Table 2 and Figure 2).

The determinants of hydrogen metabolism are widely

distributed in bacterial and archaeal genomes

By curating the sequences of all hydrogenases in
public sequence databases, we were able to compre-
hensively map the distribution and diversity of
hydrogenases across sequenced microorganisms.
Genes encoding putative hydrogenases were
detected in 1397 species (Supplementary Table S3)
across 55 phyla (Supplementary Table S4) (note that
not all species within these phyla contain hydro-
genases). The [NiFe]-hydrogenases were the most
widespread of the enzymes, occurring in 36 bacterial
and 6 archaeal phyla. Consistent with our current

The ISME Journal
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knowledge, they were widespread in all classes of
Proteobacteria, as well as Firmicutes, Cyanobacteria,
Aquificae, Euryarchaeota and Crenarchaeota.
[NiFe]-hydrogenases were also common in multiple
phyla where hydrogenases have yet to be described,
notably Bacteroidetes, Chlorobi, Chloroflexi, Planc-
tomycetes and Verrucomicrobia. Putative group Al
[FeFe]-hydrogenases were detected in 12 phyla of
anaerobic bacteria, 5 phyla of unicellular eukaryotes
and, surprisingly, the single-amplified genome
associated to the archaeal candidate phylum
Diapherotrites (pMC2A384). Other types of
[FeFel]-hydrogenases, including bifurcating, ances-
tral and sensory varieties, were exclusive to
anaerobic bacteria such as Firmicutes, Bacteroidetes,
Spirochaetes, Thermotogae and Fusobacteria. Both
[NiFe]- and [FeFe]-hydrogenase genes were also
identified within most genomes of newly charac-
terised phyla, including the databases of the MDM
project (Figure 3). In contrast, genes encoding the
functionally restricted [Fel]-hydrogenases were
exclusively found within 25 methanogen genomes
(Supplementary Figure S6). Phylogenetic distribu-
tion correlates with oxygen preference: obligate
anaerobes encoded O,-sensitive [NiFe]- and
[FeFe]-hydrogenases; obligate aerobes encoded
O,-tolerant [NiFe]-hydrogenases (groups 1d, 1h, 2a,
3b, 3d); and genomes of facultative anaerobes
contained a diverse range (Figure 3). Many hydro-
genases have a mosaic distribution that poorly
reflects 16S rRNA gene sequence phylogeny, for
example, the abundant group 1d and group 3b
[NiFe]-hydrogenases (Supplementary Figures S1
and S3), suggesting strong pressure for lateral
acquisition of these enzymes.

The determinants of microbial hydrogen metabolism
are widely distributed in ecosystems

We subsequently gained insight into the distribution
of hydrogenases at the ecosystem level through
identifying and analysing hydrogenase sequence
reads in 20 publicly available metagenomes
(Supplementary Table S5). Sequence reads corre-
sponding to the catalytic subunits/domains of
hydrogenases were detected in all metagenome
samples analysed, and all 22 [NiFe]-hydrogenase
subgroups and 3 [FeFe]-hydrogenase groups (but not
the methanogen-specific [Fel]-hydrogenases) were
detected in at least two samples each. The normalised
abundance of hydrogenase reads ranged approxi-
mately ~ 50-fold, from <0.001% of the total sequence

<
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reads in lake and coastal waters to >0.04% reads in
permafrost soils and hot springs (Supplementary
Table S5). The distribution of hydrogenase-encoding
genes in the sequence reads vary depending on the
aeration state of the samples: oxic agricultural and
forest soils were dominated by aerobically adapted
uptake and bidirectional [NiFe]-hydrogenase reads
(groups 1d, 1h, 3b, 3d); anoxic termite and human
guts contained a high abundance of fermentative and
putative sensory [FeFe]-hydrogenase reads (groups A,
B, C); and the bog soils, permafrost soils and hot
springs contained diverse [NiFe]- and [FeFe]-hydro-
genase reads (Figure 4 and Supplementary Figure S7).
Hydrogenase-encoding genes were far less abundant
within the aquatic ecosystems tested compared with
soil and enteric systems; nevertheless, numerous
sequence reads homologous to the Robiginitalea
biformata hydrogenase of the still-uncharacterised
group 1g [NiFe]-hydrogenases were detected in deep
ocean samples. The quantity and distribution of
hydrogenase reads was consistent between paired
metagenome samples, including samples from
equivalent ecosystems taken at different locations
(for example, Atlantic Ocean vs Indian Ocean)
(Figure 4). An interesting exception was the termite
gut samples, with hydrogenases predicted to be 10
times more abundant in a gut sample of an African
termite (Cubitermes sp.) compared with an American
termite (Nasutitermes sp.) (Supplementary Table S5).

Discussion

Molecular hydrogen is a major electron donor for
respiration in both anoxic and oxic ecosystems
Molecular hydrogen occurs ubiquitously in the
environment, as a result of production from biologi-
cal, geothermal and atmospheric sources (Schwartz
et al., 2013). Our analysis suggests microorganisms
are capable of respiring this fuel source in a wide
variety of ecosystems, ranging from the hypoxic H,-
enriched environments of animal guts and bog soils
to aerated soils and waters containing trace concen-
trations of H,. Group 1 and 2 [NiFe]-hydrogenases
that mediate respiratory H, uptake were encoded in
19 of the 20 ecosystems surveyed (Figure 4), and
were widely distributed in the bacterial and archaeal
phyla (Figure 3). As summarised in Table 1, these
enzymes have differentiated into multiple subgroups
that differ in their redox couplings, oxygen tolerance,
affinities and cellular interactions. This enables
these enzymes to support life across a wide range

Figure 2 Genetic organisation of hydrogenases. The genes surrounding the catalytic subunit of representatives of each subtype/subclass
are shown to-scale. Genes/domains are colour coded as follows: green =catalytic site; blue = small subunit; yellow =electron acceptor or
donor; red=redox subunit; light orange=maturation factor; dark orange=ion-translocation module; purple=regulatory module;
grey = conserved hypothetical. Redox-active centres are shown in circles, where: orange = heme; red = [4Fe4S] cluster; yellow =[2Fe2S]
cluster; green=[3Fe4S] cluster; purple =[4Fe3S] cluster. Genes are named according to nomenclature if previously defined. There are
often variations in the genetic organisation within subgroups, for example, cytochrome c¢ subunits replace cytochrome b subunits in most
group 1la and 1b [NiFe]-hydrogenases in 8-Proteobacteria. However, the organisations depicted reflect the most common organisation, as

inferred using the Microbial Genomic Context Viewer.
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of ecological niches (Pandelia et al., 2012; Schwartz
et al., 2013).

Integrating our analysis with the wider literature,
we suggest oxygen partial pressure (pO.,) principally
drove the evolution and distribution of respiratory

Diversity and distribution of microbial H, metabolism
C Greening et al

deepest-branching forms of these enzymes (groups
la, 1b) are O, sensitive and mediate anaerobic
respiration in strictly anaerobes (Supplementary
Figures S1 and S2). Such enzymes are abundant in
hypoxic soils (for example, bog soils, permafrost
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hydrogenases. Phylogenetic analysis reveals the  soils) (Supplementary Figure S7), and are
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Figure 4 Distribution of hydrogenases in ecosystems. The distribution of different hydrogenase types was analysed in 20 metagenomes.
Hydrogenases were subdivided into seven types as described in the legend of Figure 3. Metagenomes were screened using the sequences of
the catalytic subunits ([NiFe]-hydrogenases, [Fe]-hydrogenases) or catalytic domains ([FeFe]-hydrogenases) listed in Supplementary Table S1.
(a) Percentage of sequence reads for each hydrogenase type identified within 1 million random metagenome reads. (b) Percentage of
sequence reads for each hydrogenase type compared with total hydrogenase sequence reads. Supplementary Figure S5 shows the
metagenome distribution by [NiFe]-hydrogenase subgroup and [FeFe]-hydrogenase group. Note that no [Fe]-hydrogenases were detected
in these metagenomes.

<
Figure 3 Distribution of hydrogenases in microorganisms. (a) Distribution by hydrogenase type. (b) Distribution by phyla. The cells are
shaded by the number of hydrogenases detected in each phyla (light=few hydrogenases, dark=many hydrogenases, grey=no
hydrogenases). Hydrogenases were subdivided into the following seven types based on their determined or predicted functions: [NiFe]
aerobic uptake (groups 1d, 1h, 2a) [NiFe] anaerobic uptake (groups 1a, 1b, 1c, 1e, 1f, 1g, 3a), [NiFe] bidirectional (groups 3b, 3c, 3d), [NiFe]
evolving (groups 4a, 4b, 4c, 4d, 4e, 4f), [FeFe] evolving (groups A, B), [NiFe] regulatory (groups 2b, 2c) and [FeFe] regulatory (group C).
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predominantly found in the genomes of anaerobic
Firmicutes and &-Proteobacteria (Supplementary
Figure S1) capable of H,-dependent sulphate reduc-
tion, metal reduction and dehalorespiration
(Schwartz et al., 2013). The mid-branching hetero-
tetrameric hydrogenases (groups 1c, 1le, 1g) were
more taxonomically dispersed (Supplementary
Figure S1) and appear to support roles in fumarate
and nitrate respiration, anoxygenic photosynthesis
and chemolithoautotrophy across a diversity of taxa
(Pandelia et al., 2012). In contrast, the more recently
branching lineages (groups 1d, 1h and 2a) appear to
be oxygen-tolerant enzymes that mediate respiration
in aerobes and facultative anaerobes (Table 1). These
enzymes were predominant in aerated samples
(Figure 4), with 0.004 to 0.009 % of total metagen-
ome sequence reads in agricultural and forest soils
corresponding to the group 1h enzyme
(Supplementary Table S5). Our analysis suggests
that these subgroups independently developed
mechanisms to tolerate O, following the emergence
of oxygenic photosynthesis (Figure 1); consistently,
the well-reported proximal 6Cys[4Fe3S] cluster
(Fritsch et al., 2011) is exclusive to 1d enzymes
(Table 2), indicating the 1h and 2a subgroups use
alternative mechanisms (possibly using other non-
standard clusters) to prevent or reverse formation of
O,-inhibited states.

Oxygen-tolerant uptake hydrogenases are signifi-
cantly more widespread than the literature currently
reports. Aerobic H, uptake has only been reported in
three dominant soil phyla to date: many o-, - and -
Proteobacteria (for example, Ralstonia eutropha;
Schwartz et al., 2013) can grow chemolithoautotro-
phically using biologically evolved H,, whereas
certain model Actinobacteria (for example, Myco-
bacterium smegmatis; Greening et al., 2014) and
Acidobacteria (that is, Pyrinomonas methylaliphato-
genes; Greening et al., 2015a) enhance their
persistence by scavenging atmospheric H,. However,
Figure 3 reveals that the group 1d, 1h, and 2a
hydrogenases mediating such processes are also
encoded in some 17 bacterial and archaeal phyla,
among them representatives of all 9 of the most
dominant phyla in global soils (Janssen, 2006). Most
significantly, the group 1h [NiFe]-hydrogenases that
mediate tropospheric H, oxidation are encoded in
multiple representatives of undercultured, slow-
growing phyla (that is, Acidobacteria, Verrucomi-
crobia, Chloroflexi and Planctomycetes). These find-
ings are consistent with our recent hypothesis that
H., serves as an energy source for the maintenance of
dormant soil bacteria (Greening et al., 2015b).
Hydrogenase-encoding genes were also identified
in the genomes of multiple seemingly obligate
methane oxidisers, ammonia oxidisers and nitrite
oxidisers (Supplementary Table S1), suggesting H,
may serve as a fuel source for growth or survival of
these bacteria and archaea. In line with this, it was
recently demonstrated that Nitrospira moscoviensis
of the phylum Nitrospirae is capable of
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hydrogenotrophic growth using a group 2a [NiFe]-
hydrogenase (Koch et al., 2014). Aerobic H, oxida-
tion may therefore provide hitherto-unrecognised
metabolic flexibility in microorganisms controlling
the methane and nitrogen cycles.

Determinants of fermentative hydrogen production are
universally distributed

Since its discovery in the early twentieth century
(Stephenson and Stickland, 1932), it has been widely
believed that fermentative H, evolution occurs
exclusively in anaerobic microorganisms. This
notion was recently challenged by the discovery
that the obligately aerobic soil bacterium Mycobac-
terium smegmatis evolves H, using a tightly regu-
lated hydrogenase to maintain redox balance under
hypoxia (Berney et al., 2014). The surveys presented
in this work demonstrate that homologues of the
group 3b [NiFe]-hydrogenase mediating mycobacter-
ial H, evolution actually have the most extensive
distribution (phylum level) of all the subgroups in
our database. Once thought to be confined to
anaerobic archaea (Ma et al., 1993), these enzymes
actually occur in at least 27 bacterial and archaeal
phyla, among them multiple representatives of the
‘MDM’ (Rinke et al., 2013) (Figure 3). In addition to
the versatile group 3d [NiFe]-hydrogenases (Burgdorf
et al., 2005), these oxygen-tolerant enzymes are
proposed to serve as redox valves that interconvert
electrons between NAD(P)H and H, depending on
the availability of exogenous electron acceptors
(Greening and Cook, 2014). These enzymes are also
abundant at the metagenome level, constituting
dominant groups in aerated soils and hot spring
ecosystems (Figure 4). These findings may help to
explain why the communities of such ecosystems are
relatively stable despite pO, fluctuations. Unsurpris-
ingly, the classical determinants of H, fermentation
were abundant in anoxic ecosystems (Figure 4).
Figure 3 shows that formate hydrogenlyases (group
4a [NiFe]-hydrogenases) are widespread in enteric
bacteria that adopt a facultatively fermentative
lifestyle. The group A1 [FeFe]-hydrogenases, which
mediate ferredoxin-dependent H, production (Peters
et al., 1998), are distributed in numerous obligately
fermentative bacteria (for example, clostridia), eukar-
yotes containing hydrogenosomes (for example,
Trichomonas vaginalis) and unicellular algae med-
iating photobiological H, production (for example,
Chlamydomonas reinhardtii). On the basis of
domain conservation and phylogenetic similarity,
we predict the still-uncharacterised group B [FeFe]-
hydrogenases serve a similar function.

Energy-converting and electron-bifurcating complexes

enhance the efficiency and flexibility of anaerobe-type
hydrogenases

Although group 4 [NiFe]-hydrogenases are tradition-
ally known for their roles in fermentation, the



majority of these enzymes have a respiratory function.
They associate into complexes comprising primary
dehydrogenases and terminal hydrogenases and con-
serve the energy liberated during electron transfer as a
proton- or sodium-motive force (Buckel and Thauer,
2013). Our analysis shows these enzymes have
retained roles in anaerobic microorganisms, espe-
cially Firmicutes, Proteobacteria (y, & and e classes)
and methanogens (Figure 3), and contribute to
hydrogenase diversity in metagenomes (Figure 4).
They appear to have diverse physiological roles, as
reflected by their wide-branching phylogeny
(Figure 1) and highly modular genetic organisation
(Figure 2). This enables them to liberate electrons
from low-potential donors, namely formate (group 4a,
4b, possibly 4f), carbon monoxide (group 4b, 4c) or
ferredoxin (group 4d, 4e), whereas protons serve as
the terminal electron acceptor. Though minimalistic,
the respiratory chains they form are often highly
efficient and may provide a primary strategy for
energy generation within particularly oligotrophic
environments; this was emphasised by the recent
discovery of a complex in the deep-sea vent archaeon
Thermococcus onnurineus that sustains growth
across a narrow energy bracket by transferring
electrons from formate to protons (Kim et al., 2010;
Lim et al, 2014). Others are highly flexible, as
demonstrated by the multifaceted roles of the physio-
logically reversible Ech hydrogenase (group 4e) in
hydrogenotrophic vs aceticlastic methanogenesis
(Meuer and Kuettner, 2002). Our phylogenetic ana-
lyses suggest that the ancestral forms of the group 4
enzymes—and likely [NiFe]-hydrogenases as a whole
—may have been formate-oxidising, H,-evolving,
energy-transducing complexes. We discovered a
deep-branching lineage of these enzymes in Firmicutes
(candidate group 4f [NiFe]-hydrogenases) that align
closely with the functionally cryptic Ehr complexes
(homologues of group 4 [NiFe]-hydrogenases lacking
Ni-binding cysteine residues; elaborated on in
Marreiros et al., 2013) and yet possess the critical
cysteine residues required for [NiFe]-centre ligation.
Many of the anaerobe-type hydrogenases we
identified are predicted to mediate electron bifurca-
tion, a recently discovered third mode of energy
conservation. Electron-bifurcating hydrogenases are
bidirectional enzymes that energise the endergonic
reaction of the reduction of ferredoxin with H, by
simultaneously reducing a relatively electropositive
acceptor (for example, heterodisulphide, NAD,
NADP) (Buckel and Thauer, 2013). The group 3c
[NiFe]-hydrogenase in functional complex with
heterodisulphide reductase, for example, simulta-
neously reduces ferredoxin and heterodisulphide
during H, oxidation (Kaster et al., 2011); these
enzymes complete the recently elucidated Wolfe
cycle of methanogenesis (Thauer, 2012), and are also
distributed in some bacteria (for example, §-Proteo-
bacteria) (Figure 4). The group A3 [FeFe]-hydroge-
nases reversibly bifurcate electrons from H, to
ferredoxin and NAD using trimeric or tetrameric
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complexes; in the reverse reaction, energy conserved
during the oxidation of ferredoxin is used to drive
the thermodynamically unfavourable production
of H, from NADH (Schut and Adams, 2009;
Schuchmann and Miiller, 2012). A subtype of the
group A4 [FeFe]-hydrogenases can also bifurcate
electrons from H, to NADP and ferredoxin, and act
physiologically in hexameric complexes with for-
mate dehydrogenase (Wang et al., 2013). We ana-
lysed the genetic organisation of the 705 group A
[FeFe]-hydrogenases represented in our database in
order to identify putative electron-bifurcating com-
plexes (Figure 2 and Supplementary Table S1). This
analysis suggested that whereas putative NADP-
dependent bifurcating complexes are rare
(7 sequences), putative NAD-dependent bifurcating
complexes are very abundant in anaerobic bacteria
(391 sequences). The group A3 [FeFe]-hydrogenases
are highly flexible, capable of both dissipating excess
reductant during fermentation (for example,
cellulose fermentation) and generating reduced
electrons for carbon fixation (for example, acetogen-
esis) and respiration (via the sodium-motive ferre-
doxin-NAD oxidoreductase complex) (Buckel and
Thauer, 2013; Schuchmann and Muller, 2014).
Supported by PCR amplicon sequencing (Zheng
et al., 2013), metagenome analysis (Figure 4) demon-
strates that group A [FeFe]-hydrogenases, including
probable bifurcating hydrogenases, are abundant in
termite guts.

Hydrogen sensing may be more important than
previously recognised

Our exploration of hydrogenase sequences across a
diversity of environments also uncovered evidence
that hydrogen-based signal transduction cascades
are more significant than previously anticipated.
The only characterised sensory hydrogenases to
date are the group 2b [NiFe]-hydrogenases (for
example, Ralstonia eutropha, Rhodobacter capsu-
Iatus) (Lenz and Friedrich, 1998; Vignais et al.,
2005); these enzymes have adapted the [NiFe]
active site to sense high partial pressures of H,
and in turn activate two-component regulatory
cascades that control expression of respiratory
hydrogenases (Greening and Cook, 2014). Our
analysis shows these enzymes are restricted to
Proteobacteria (a, p and y classes) (Figure 3 and
Supplementary Figure S2) and are present in soil
environments characterised by logarithmic varia-
tions in pH, (Figure 4 and Supplementary Figure
S7). We identified a sister lineage, the group 2c
[NiFe]-hydrogenases, that appear to be co-
transcribed with diguanylate cyclases/phospho-
diesterases (Figure 2). Through modulation of cyclic
di-GMP production, we hypothesise these enzymes
regulate global cellular functions during adaptation
to H,-rich vs H,-deprived environments; currently,
however, H,-dependent signal cascades have only
been shown to regulate the expression of other
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hydrogenases. Our genome and metagenome sur-
veys suggest these enzymes are rare (Figures 3 and
4), and are primarily found in methane-oxidising
bacteria and sulphate-reducing bacteria that inhabit
aquatic environments (Supplementary Figure S2).
The presence of helix-turn-helix protein-encoding
genes immediately downstream of group 2 [NiFe]-
hydrogenase genes in some Aquificae and Cre-
narchaeota (Supplementary Figure S2) is also
suggestive of a regulatory role and requires
further study.

Looking more widely, it is probable that the group
C [FeFel-hydrogenases of anaerobic bacteria have a
sensory role. Our conserved domain analysis sug-
gests these enzymes are expressed or fused with
putative regulatory components, namely serine/
threonine phosphatases, histidine kinases, AAA+-type
transcriptional activators, methyl-accepting chemo-
taxis proteins and again diguanylate cyclases/phos-
phdiesterases (Figure 2). As with the group 2b and 2c
[NiFe]-hydrogenases, the operons encoding these
hydrogenases contain predicted PAS domains
(Figure 2) that likely transduce the signal of hydro-
genase activity to downstream components via a
redox-active heme. There is some transcriptional
evidence that the putative phosphatase-linked sen-
sory hydrogenases of Thermoanaerobacterium sac-
charolyticum (Shaw et al., 2009) and Ruminococcus
albus (Zheng et al., 2014) regulate the transcription
of group A [FeFe]-hydrogenases, but it has yet to be
biochemically confirmed that these enzymes
have a regulatory role. Other sensory hydrogenases
may regulate wider cellular functions (for example,
motility) in response to changes of pH, in
anoxic environments. Group C [FeFe]-hydroge-
nases are abundant in strictly anaerobic bacteria
of the phyla Firmicutes, Bacteroidetes, Spiro-
chaetes and Thermotogae. These hydrogenases
are highly abundant in termite guts and strongly
associated with group A [FeFel]-hydrogenases
(Supplementary Figure S7).

Conclusions

The surveys reported here suggest that hydro-
genases are highly diverse, ancient and widespread.
Our work collectively supports the hypothesis that
H, serves as a widely utilised energy source for
microbial growth and survival. Before this study, it
was already well established that H, metabolism
played major roles in certain specific microorgan-
isms and ecosystems (Schwartz et al., 2013).
However, by comprehensively surveying the
distribution of hydrogenases, we have provided
evidence that microbial H, metabolism is signifi-
cantly more extensive and elaborate than pre-
viously anticipated. Integrating analysis of primary
phylogeny, genetic organisation and metal-binding
motifs, we demonstrate that hydrogenases have
evolved into numerous functionally distinct
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subgroups/subtypes. This diversification has
enabled the primordial process of H, metabolism
to sustain roles in most major phyla and ecosys-
tems.

We showed that some 51 bacterial and archaeal
phyla have the genetic capacity to oxidise or evolve
H,—vastly more than the 13 phyla experimentally
shown to metabolise H, (Schwartz et al.,, 2013;
Greening et al., 2015a)—and emphasised through
metagenome analysis that microbial H, meta-
bolism is likely to be highly important in both
oxic and anoxic environments. Our analysis has
emphasised that the evolution and distribution of
hydrogenases is particularly influenced by pO,;
however, other factors such as pH,, pH, temperature
and metal ion availability are also likely to be
profoundly significant (Schwartz et al, 2013;
Greening and Cook, 2014). However, experimental
studies are required to gain a deeper understanding
of the ecological significance of H, oxidation and
evolution.

In light of this work, there are now numerous new
avenues to investigate microbial hydrogen meta-
bolism at the microscopic and macroscopic levels:
What are the functions of multiple newly defined
types of [NiFe]-hydrogenase (groups 1e, 1g, 2c, 2d, 4f)
and [FeFe]-hydrogenases (groups A2, B, C)? Why are
hydrogenases found in the genomes of micro-
organisms as diverse as Acidobacteria, Chlorobi,
Crenarchaeota and Bacteroidetes? What environ-
mental and physiological signals lead to the
regulation of the genetic determinants of hydrogen
metabolism? How does microbial H, metabolism
influence anthropogenic ecosystems (for example,
wastewater treatment) and how can the reported
diversity of hydrogenases be exploited for
bioremediation, biofuel production and fuel cell
development? How does microbial H, metabolism
influence community structuring and biogeochemical
cycling in soil and aquatic environments? Some of
these research questions will be addressed as we
further investigate the physiological roles of the
hydrogenases described here and the influence of H,
metabolism in different ecosystems.
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