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Abstract 

Previous genome-wide association studies (GWAS) have identified several common 

genetic variants that may significantly modulate cancer susceptibility. However, the 

precise molecular mechanisms behind these associations remain largely unknown; it 

is often not clear whether discovered variants are themselves functional or merely 

genetically linked to other functional variants. Here we provide an integrated method 

for identifying functional regulatory variants associated with cancer and their target 

genes by combining analyses of expression quantitative trait loci (eQTL), a modified 

version of allele-specific expression (ASE) that systematically utilizes haplotype 

information, transcription factor (TF) binding preference, and epigenetic information. 

Application of our method to a breast cancer susceptibility region in 5p12 

demonstrates that the risk allele rs4415084-T correlates with higher expression levels 

of the protein-coding gene mitochondrial ribosomal protein S30 (MRPS30) and 

lncRNA RP11-53O19.1. We propose an intergenic SNP rs4321755, in linkage 

disequilibrium (LD) with the GWAS SNP rs4415084 (𝑟2=0.988), to be the predicted 

functional SNP. The risk allele rs4321755-T, in phase with the GWAS rs4415084-T, 

created a GATA3 binding motif within an enhancer, resulting in differential GATA3 

binding and chromatin accessibility, thereby promoting transcription of MRPS30 and 

RP11-53O19.1. MRPS30 encodes a member of the mitochondrial ribosomal proteins, 

implicating the role of risk SNP in modulating mitochondrial activities in breast 

cancer. Our computational framework provides an effective means to integrate 

GWAS results with high-throughput genomic and epigenomic data and can be 

extended to facilitate rapid functional characterization of other genetic variants 

modulating cancer susceptibility. 

 

Major Findings 
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We developed a computational framework for integrating GWAS results with 

heterogeneous cancer genomic data and tissue-specific epigenetic data to facilitate the 

discovery of causative variants functioning through long-distance gene regulation. 

Applied to a breast cancer susceptibility region in 5p12, our method provides strong 

support for a putative causative SNP that is predicted to modulate GATA3 binding 

and regulate the expression of MRPS30 and nearby lncRNAs. 

 

Quick Guide to Equations and Assumptions 

Since the majority of GWAS variants lie in non-coding regions of the human genome 

where a direct link to gene function is not obvious, we searched for (causative SNP, 

TF, target gene) triplets under the model of gene regulation by enhancers, in which 

the SNP interferes with the binding affinity of a key transcription factor (TF). With 

this assumption, we built a regulation model for a breast cancer susceptibility locus 

harboring three GWAS SNPs in the 5p12 region. To infer candidate target genes, we 

first performed expression quantitative trait loci (eQTL) analysis by regressing gene 

expression levels against two co-variates: genotype status at a given GWAS SNP and 

copy number of the gene. For each pair of 𝑖 ∈ {GWAS SNPs in 5p12} and 𝑗 ∈ {genes 

in 5p12 TAD}, the eQTL model can be expressed as:  

𝐸𝑗 
= 𝛼𝑖𝑗 + 𝛽𝑖𝑗  𝐺𝑖  + 𝛾𝑖𝑗 𝐶𝑁𝑗 + 𝜖𝑖𝑗

  
, 

where 𝐸𝑗 = 𝑙𝑜𝑔2(𝐹𝑃𝐾𝑀𝑗 + 1)  is the expression level of gene 𝑗 , 𝐺𝑖 ∈ {0,1,2}  the 

genotype status of SNP 𝑖 indicating the number of risk alleles, 𝐶𝑁𝑗 the copy number 

of gene 𝑗, 𝛼𝑖𝑗  the intercept, and 𝜖𝑖𝑗  the error term. Genes with 𝐹𝑃𝐾𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥ 1 (𝐹𝑃𝐾𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅: 

mean expression among tumor samples) and 𝑝𝑖𝑗
𝐺 ≤ 𝛼 (𝑝𝑖𝑗

𝐺 : 𝑝-value of 𝛽𝑖𝑗  ; 𝛼 = 0.05) 

were called as significant eQTL target genes. Bonferroni correction for multiple 

Research. 
on February 8, 2018. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on January 19, 2018; DOI: 10.1158/0008-5472.CAN-17-3486 

http://cancerres.aacrjournals.org/


Cancer Research Mathematical Oncology 

 5 

hypothesis testing was further applied using 𝑝𝑖𝑗
𝐺 ≤

𝛼

𝑛
 , where 𝑛 is the total number of 

genes tested in the TAD (𝑛 = 22, thus 
𝛼

𝑛
= 0.0023). 

 

To identify cis-regulated target genes, we tested local chromosome allele-specific 

expression (LCASE) using exonic SNPs that were properly phased with the GWAS 

SNP 𝑖 . For each exonic SNP 𝑚 , we obtained a subset of 𝐾  patients who had 

heterozygous genotypes at both the GWAS SNP 𝑖 and the exonic SNP 𝑚. For each 

patient 𝑘 (𝑘 ∈ {1, … , 𝐾}), we identified the risk allele of SNP 𝑚 (𝑟𝑖𝑠𝑘𝑚) and also its 

protective allele (𝑝𝑟𝑜𝑚) by phasing them to the risk or protective allele of the GWAS 

SNP. Allelic coverage at the exonic SNP 𝑚 was determined to obtain 𝑛(𝑟𝑖𝑠𝑘𝑚) and 

𝑛(𝑝𝑟𝑜𝑚), the number of reads containing the risk or protective allele, respectively. 

Depending on the sample size 𝐾, two statistics were used to test for transcription 

imbalance between the two chromosome copies:  

{
 𝑛(𝑟𝑖𝑠𝑘𝑚)~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛(𝑟𝑖𝑠𝑘𝑚) + 𝑛(𝑝𝑟𝑜𝑚), 𝑝0 = 0.5),          𝐾 < 5
  𝑛(𝑝𝑟𝑜𝑚) − 𝑛(𝑟𝑖𝑠𝑘𝑚) ~ 𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛 𝑠𝑖𝑔𝑛𝑒𝑑 − 𝑟𝑎𝑛𝑘,                 𝐾 ≥  5

 

 

To discover causative SNPs, we reasoned that functional SNPs should localize within 

open chromatin regions in enhancers and affect the binding affinity of a TF by 

changing its recognition motif. We thus obtained a list of candidate SNPs by 

overlapping LD SNPs of GWAS variants (𝑟2 ≥ 0.8) with DNase I hypersensitive 

sites (DHS) measured in breast cancer cell lines. For each candidate SNP, we scanned 

the two sequences harboring different alleles of the SNP with a set of position weight 

matrices (PWM). Suppose that a sequence 𝒙 of length 𝐿  matched a PWM, where 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑘, … , 𝑥𝐿−1, 𝑥𝐿) harbored one allele of the candidate SNP at position 

𝑘. Let 𝒙𝒂 = (𝑥1, 𝑥2, … , 𝑥𝑘
𝑎, … , 𝑥𝐿−1, 𝑥𝐿) denote the sequence harboring the other allele 
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𝑥𝑘
𝑎, and let 𝑝𝑙,𝑥 denote the probability of nucleotide 𝑥 at position 𝑙 in the PWM. To 

quantify the effect of allele change (𝑥𝑘 → 𝑥𝑘
𝑎) on the motif, the difference in motif 

scores was calculated as 𝐷(𝒙, 𝒙𝒂) = 𝑠𝑐𝑜𝑟𝑒(𝒙) − 𝑠𝑐𝑜𝑟𝑒(𝒙𝒂) , where 𝑠𝑐𝑜𝑟𝑒(𝒙)  was 

defined as ∑ log 𝑝𝑙,𝑥𝑙

𝐿

𝑙=1
. We devised two approaches to measure the significance 

of 𝐷(𝒙, 𝒙𝒂). In the first approach of simulating neutral mutations, we constructed an 

empirical null distribution of 𝐷(𝒙, 𝒙𝒂)  by introducing random single-nucleotide 

mutations 𝑛 times (𝑛 = 5000), and calculated the empirical 𝑝-value. In the second 

approach of analysing differential 𝑘-mer enrichment (with 𝑘 = 𝐿), we tested for a 

difference in the occurrence frequencies of 𝒙 and 𝒙𝒂 between TF ChIP-seq peaks and 

control regions sampled from breast cancer cell line DHS (Chi-squared test).  
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of common 

genetic variants associated with various traits and diseases, including cancer (1). 

However, most of these variants lie in non-coding regions of the genome where a 

direct link to gene function or regulation is difficult to assess (2). Furthermore, it is 

often unclear whether the true molecular perturbations associated with carcinogenesis, 

cancer progression, or therapeutic response indeed lie in the reported GWAS variants 

themselves or some other linked genetic variants. As a result, discovering the direct 

functional consequences of genetic variation at GWAS loci has been a critical missing 

step in utilizing the rich GWAS results to advance cancer research. We here address 

this important challenge by presenting an integrative computational framework that 

can facilitate the rapid identification of candidate functional regulatory variants in 

open chromatin regions and their target genes.  

 

Some approaches are currently known for investigating candidate target genes and 

causative SNPs of GWAS variants, but they usually yield many false positives (3,4). 

For identifying candidate target genes, two popular approaches correlate gene 

transcription level with the variants across a population of patients: one is expression 

quantitative trait loci (eQTL) analysis and the second is allele-specific expression 

(ASE) analysis. Both methods make use of genotype and messenger RNA (mRNA) 

transcription profiles in large patient cohorts available from various databases such as 

The Cancer Genome Atlas (TCGA). The first method has been successful for 

identifying genes that are correlated in overall mRNA level with the GWAS variant 

genotypes. For example, Li et al. (5) performed eQTL analysis on estrogen receptor 

positive (ER+) breast cancer data and found SNPs correlating with the expression of 
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essential genes such as ESR1 and c-MYC. However, traditional eQTL analysis is only 

correlative and cannot distinguish between direct and secondary target genes. The 

ASE method uses patients who are heterozygous at a given GWAS SNP and tests for 

direct cis-regulated genes showing an imbalance in transcription activity between the 

two separate chromosome copies harboring different alleles of the variant. Such an 

imbalance is typically assessed from RNA-seq data by counting the allele-specific 

coverage of exonic SNPs present in candidate genes within a certain distance from the 

GWAS SNP. Most studies to date, however, use unphased ASE analysis; that is, the 

exonic SNPs showing an allelic skew are not phased with the GWAS variant (5–7), 

thereby losing key information about whether the GWAS variant attenuates or 

promotes target gene transcription. In limited studies utilizing phased ASE (8), 

phasing accuracy has not been rigorously evaluated; as a result, testing for the 

consistency of phased ASE across patients may lose power when incorrectly phased 

haplotypes are used for some patients.  

 

Our integrative approach improves upon these ideas in several ways. First, we restrict 

eQTL analysis only to those genes that lie within the same topologically associated 

domain (TAD) as a given GWAS SNP. Since TADs are thought to represent physical 

chromatin loops containing regulatory elements and their target genes (9), restricting 

the analysis to GWAS locus-containing TADs should help remove false positive 

genes and improve upon the current practice of choosing an arbitrary distance cutoff 

(5). We then apply ASE analysis on exonic SNPs properly phased with GWAS SNPs 

by removing patient samples whose reconstructed haplotypes show unstable phasing 

in our simulation study. This filtering method, which we termed the local-

chromosome allele-specific expression (LCASE), effectively analyzes ASE on a local 
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chromosome segment that is in LD with a GWAS SNP and increases statistical power 

by removing incorrect haplotypes from consideration. To find the causal regulatory 

SNP linked to a given GWAS SNP, we search for linked SNPs residing in functional 

open chromatin regions and computationally assess the SNPs’ effect on candidate 

transcription factor (TF) binding motifs, as we have previously done to show that the 

two well-known point mutations in the TERT promoter create new binding sites of 

GABP to reactivate TERT transcription (10). 

 

We demonstrate the utility of our method by applying it to a breast cancer 

susceptibility region in 5p12, which is a GWAS hotspot harboring three non-coding 

GWAS SNPs replicated in previous studies (11–13). First, we show that all three 

GWAS SNPs may be targeting the same genes, the protein-coding gene MRPS30 and 

lncRNA RP11-53O19.1, both of which have been implicated in cancer (12,14,15). 

MRPS30 encodes a member of the mitochondrial ribosomal large subunits (14), 

suggesting the risk SNP’s role in modulating mitochondrial activities. The lncRNA 

RP11-53O19.1, also known as breast cancer-associated transcript 54 (BRCAT54), is 

overexpressed in luminal A breast cancer subtype (ER+) (15), suggesting its specific 

role in ER+ breast cancers. We then propose that an intergenic SNP, in LD with one 

of the 5p12 GWAS SNPs, is the predicted functional SNP. We provide multiple lines 

of evidence supporting that the risk allele of the predicted functional SNP increases 

the binding affinity of GATA3, an important TF known to cooperate with ESR1 and 

FOXA1 in ER+ breast cancers (16). Although this paper focuses on the ER+ breast 

cancer risk hotspot in 5p12, the described method for dissecting the functional 

consequences of GWAS variants can be generalized to other noncoding loci 

implicated in a variety of cancers or traits.  
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Materials and Methods 

TCGA breast cancer data 

Germline and tumor genotypes at tag SNPs from 979 patients were downloaded from 

the TCGA Data Portal and subsequently used for imputation. The following data were 

obtained from the NCI Genomic Data Commons (GDC) Legacy Archive (17): 693 

patients’ tumor copy number segmentation data, 788 patients’ processed tumor gene 

expression data, and 795 ER+ breast cancer patients’ tumor RNA-seq raw reads. Data 

from normal tissue and primary tumor were matched based on patient barcodes. 

Patients having all four types of data available were selected to obtain a final set of 

679 female ER+ breast cancer patients. 

 

Genotype imputation  

TCGA germline genotypes of tag SNPs measured by Affymetrix human SNP array 

6.0 were mapped to 1000 Genomes Project phase 3 (18) variants. For each patient, 

genotypes with low quality (5
th

 quantile in confidence score) were excluded. Since 

none of the three GWAS SNPs (rs4415084, rs10941679, rs7116600) were directly 

genotyped by the SNP array, imputation was performed in the 5p12 region using 

IMPUTE2 (19,20) and the 1000 Genomes Project Phase 3 (October 2014 version)  

(18) as a reference panel. Imputed genotypes were retained if the maximum genotype 

probability exceeded the threshold 0.9  and the minor allele frequency (MAF) 

exceeded 0.01 (for high imputation quality (20)). To obtain a more accurate picture of 

germline genotypes, the genotypes from normal blood rather than primary tumor were 

used in all analysis to avoid miscalls from potential genotyping errors and somatic 

mutations.  
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Chromosome interaction data and TAD 

Hi-C data were obtained from GSE66733 (21) and GSE51687 (22) for MCF-7; and 

from GSE53463 (23) and the Encyclopedia of DNA Elements (ENCODE) (24) 

ENCSR549MGQ for T-47D. MCF-7 TAD structures were determined based on 

insulation score from Hi-C data (GSE66733). The TAD information in T-47D was 

obtained from the ENCODE dataset ENCFF075QYD. We used the MCF-7 TAD 

information in the analysis, as the two data sets were similar. MCF-7 ChIA-PET 

interactions mediated by CTCF, ESR1, and POLR2A were obtained from ENCODE 

(24).  

 

TCGA breast cancer eQTL analysis 

We performed TCGA-based eQTL analysis by constructing a multivariate linear 

model that regressed the expression level of each gene against the copy number of the 

gene and the genotype status at a given GWAS SNP locus. For the 𝑖th GWAS SNP in 

5p12, we encoded its germline genotype 𝐺𝑖 as the number of risk alleles ( 𝐺𝑖 ∈

 {0,1,2}). To determine the copy number of the 𝑗th gene residing within the 5p12 

TAD region, we took length-weighted average (𝑠𝑗̅) of tumor copy number segment 

data covering the gene and transformed it into copy number 𝐶𝑁𝑗 = 2 ∗ 2𝑠𝑗̅. The RNA-

seq RPKM value of gene 𝑗  was log-transformed as 𝐸𝑗 = 𝑙𝑜𝑔2(𝑅𝑃𝐾𝑀𝑗 + 1) . 

Multivariate linear regression (25), 𝐸𝑗 
= 𝛼𝑖𝑗 + 𝛽𝑖𝑗  𝐺𝑖  + 𝛾𝑖𝑗 𝐶𝑁𝑗 + 𝜖𝑖𝑗 , was then 

performed for each pair of 𝑖 ∈ {𝐺𝑊𝐴𝑆 𝑆𝑁𝑃𝑠 𝑖𝑛 5𝑝12} and 𝑗 ∈

{𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 5𝑝12 𝑇𝐴𝐷}, where 𝛼𝑖𝑗 is the intercept and 𝜖𝑖𝑗 the error term. Genes with 

𝑅𝑃𝐾𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥ 1 (𝑅𝑃𝐾𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ : mean expression among tumor samples) and 𝑝𝑖𝑗
𝐺 ≤ 𝛼  (𝑝𝑖𝑗

𝐺 : 𝑝-

value of 𝛽𝑖𝑗  ; 𝛼 = 0.05) were called as significant eQTL target genes. Bonferroni 
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correction for multiple hypothesis testing was further applied using 𝑝𝑖𝑗
𝐺 ≤

𝛼

𝑛
 , where 𝑛 

is the total number of genes tested in the TAD (𝑛 = 22, thus 
𝛼

𝑛
= 0.0023). 

 

LCASE analysis 

We tested for within-patient differential transcription between the two chromosome 

copies harboring different alleles of a given GWAS SNP using a modified version of 

ASE analysis which we termed LCASE. To distinguish between the transcripts from 

different chromosome copies, we utilized exonic SNPs (GENCODE v19 (26)) that 

were heterozygous based on imputation results. For each exonic SNP, we selected a 

subset of patients with heterozygous genotypes at both the GWAS SNP and the 

exonic SNP. For each patient in this subset, we used SHAPEIT2 (27) to determine the 

phase between the GWAS SNP and exonic SNP. We denoted the risk and protective 

alleles at the GWAS SNP as risk and pro, respectively, and denoted the reference and 

alternative alleles of the exonic SNP under consideration as 0 and 1, respectively. To 

remove uncertain phasing, we further sampled haplotypes n times (n=100) from the 

haplotype model generated by SHAPEIT2 and computed the occurrence probability 

(𝑝𝑟𝑖𝑠𝑘|0,  𝑝𝑟𝑖𝑠𝑘|1)  of the two phases, thereby removing patient samples with no 

dominant phase as indicated by the condition max(𝑝𝑟𝑖𝑠𝑘|0,  𝑝𝑟𝑖𝑠𝑘|1) < 0.9 

(Supplementary Fig. 1). We then counted the allelic-specific coverage of each 

exonic SNP from high quality RNA-seq reads ( 𝑀𝐴𝑃𝑄 ≥ 20 ) and tested for 

transcription imbalance using two statistical tests depending on the sample size 𝐾: 

binomial test (when 𝐾 < 5) and Wilcoxon signed-rank test (when 𝐾 ≥ 5).  

 

Functional SNPs prioritization 
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A list of GWAS variants in the 5p12 region were obtained from the NHGRI GWAS 

Catalog (28), and the risk alleles were extracted from Stacey et al. (11) and Thomas et 

al. (13). All common (𝑀𝐴𝐹 ≥ 0.01) SNPs from 1000 Genomes Project Phase 3 in 

high LD ( 𝑟2 ≥ 0.8 ) with any of the 5p12 GWAS SNPs were selected for 

prioritization. All 𝑟2 values were calculated based on the 1000 Genomes Project 

Phase 3 EUR population. For SNP prioritization, DNase I hypersensitivity sites 

(DHS) in MCF-7 and T-47D were collected from the ENCODE (24) database, 

including DHS under estradiol treatment (Supplementary Table 1). Only those LD 

SNPs that overlapped with a narrow peak from at least one of DHS replicate 

experiments were considered for further investigation. We also used histone 

modification and TF binding profiles to facilitate functional SNP prioritization. 

Histone modification data were obtained from ENCODE and the Gene Expression 

Omnibus (GEO) database (GSE26831, GSE63109 and GSE69112). ChIP-seq data in 

MCF-7 and T-47D for TFs – including ESR1, PGR, GATA3, and FOXA1 known to 

be important in breast cancer – were obtained from ENCODE and GEO 

(Supplementary Table 2). Raw ChIP-seq data from GEO were mapped using BWA 

(29) (default parameters), and peaks were called using MACS2 (30) (TF ChIP-seq: 

default parameters; Histone modification ChIP-seq: broadpeak mode, 0.1 FDR).  

 

Motif analysis 

We collected TF position weight matrices (PWM) from HOCOMOCO Human v10 

(31), FACTORBOOK (32,33), TRANSFAC (34), JASPAR vertebrates (35) and 

Jolma2013 (36) (Supplementary Table 3). To identify motifs potentially affected by 

a SNP, we used the program FIMO (37) (version 4.12.0) to scan the two 50bp 

sequences centered at the different alleles of each candidate SNP (FIMO threshold 
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10−3). We then sought for candidate SNP-TF pairs for which the sequence harboring 

one allele of the SNP matched the TF motif, whereas the sequence harboring the other 

allele did not. For each SNP-TF pair, the statistical significance of creating or 

disrupting the motif via the SNP was evaluated with two approaches: mutation 

simulations and, when available, ChIP-seq k -mer enrichment analysis. The first 

approach compared the change in motif score caused by the SNP against the changes 

caused by random single-nucleotide mutations simulated 5000 times, where the motif 

score was defined as ∑ log 𝑝𝑙,𝑛𝑙

𝐿

𝑙=1
 (𝑝𝑙,𝑛𝑙

: the probability of nucleotide 𝑛𝑙 at position 

𝑙 in the PWM of length L; Supplementary Methods). The second approach tested for 

the differential enrichment of k -mers (e.g. k = L ) harboring different alleles by 

comparing their occurrence frequency in TF ChIP-seq peaks against that in control 

regions (random open chromatin regions in MCF-7 or T-47D; Chi-squared test; 

Supplementary Methods) (38). 

 

TF-target correlation analysis 

The candidate SNP-TF pairs from motif analysis were further filtered based on the 

correlation structure between each candidate TF and its eQTL target gene. A list of 

human TFs was obtained from AnimalTFDB (39); and, only the expressed TFs 

(𝑅𝑃𝐾𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅ ≥ 1 among ER+ breast cancer patients) overlapping with the candidates from 

motif analysis were further considered and divided into three groups: candidate 

activators (Pearson correlation coefficient 𝑟 ≥ 𝑟+2𝜎), candidate repressors (𝑟 ≤ 𝑟−2𝜎), 

and uncorrelated TFs (𝑟−2𝜎 < 𝑟 < 𝑟+2𝜎 ), where the thresholds 𝑟−2𝜎  and 𝑟+2𝜎  were 

chosen based on the distribution of correlation coefficients between random pairs of 

TF and non-TF genes (𝑟−2𝜎 = −0.337; 𝑟+2𝜎 = 0.409; Supplementary Methods). 

We then narrowed the list of candidate TFs based on four models shown in 
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Supplementary Fig. 2. In this paper, we focused on an example of enhancer-

activating risk allele. In this case where the target gene expression was positively 

correlated with the number of GWAS risk allele, we selected TFs passing the 

following filters as candidate activators: 1) the risk allele of the candidate enhancer 

SNP significantly increased the motif score of the TF; 2) the TF expression level was 

positively correlated (𝑟 ≥ 𝑟+2𝜎) with the target gene expression level among patients 

having two copies of the risk allele; 3) the TF-target gene expression correlation in 

patients carrying two copies of the risk allele (two copies of the motif) was stronger 

than that in patients carrying no risk allele (no motif).  

 

TF allele-specific binding (ASB) 

For TFs with ChIP-seq data available in MCF-7 and T-47D, we tested for ASB by 

searching for a skew in the read coverage of candidate heterozygous SNPs located 

within peaks. The significance of a skew was measured by using the binomial test 

assuming no bias. To determine the genotype status, tag SNP data for MCF-7 and T-

47D were obtained from CCLE project (40), and imputation was performed using the 

same pipeline described above. To check that the candidate loci have no deletion or 

amplification events, which might complicate the ASB analysis, copy number data for 

the cell lines were obtained from CCLE (40) and ENCODE (24) (GSE40698). ChIP-

seq reads from different replicates were combined and deduplicated. 

 

Results 

Integrative analysis framework for GWAS functional characterization 

We integrated multiple genomic analyses to identify systematically the triplets of 

functional SNP, corresponding TF regulator, and target gene (Fig. 1a, b). Our main 
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hypothesis was that non-coding SNPs modulating cancer risk would likely lie inside 

putative regulatory elements to promote or attenuate the binding affinity of relevant 

TFs which would be reflected at the mRNA level of the target gene. A schematic 

representation of our framework is shown in Fig. 1a. Target genes were identified by 

using within-TAD eQTL and LCASE analyses of GWAS SNPs, and functional SNP-

TF candidates were determined by integrating motif analysis, expression correlation 

analysis, and epigenetic annotation of regulatory regions (Methods) for GWAS SNPs 

and their high LD SNPs.  

 

5p12 GWAS risk alleles correlate with elevated MRPS30/RP11-53O19.1 expression 

We applied our computational framework to a breast cancer susceptibility region in 

5p12. As there are three ER+ breast cancer GWAS SNPs in the 5p12 risk hotspot 

(11,13) (Fig. 2), we first performed eQTL analysis for individual SNPs to investigate 

whether they all targeted the same genes. We restricted the analysis to the TAD 

containing all three GWAS SNPs based on the MCF-7 TAD information  (21). The 

5p12 TAD region (chr5:43,480,001-45,000,000, hg19) containing all three GWAS 

SNPs encompassed 7 protein-coding genes and 15 non-coding RNAs (GENCODE 

v19). Among them, the protein-coding gene MRPS30 and lncRNAs RP11-53O19.1 

and RP11-53O19.3 showed significant eQTL correlation (Genotype effect 𝑝 ≤ 0.05) 

with all three GWAS SNPs, but RP11-53O19.3 had only borderline significance with 

rs7716600 (Supplementary Table 4, 5). Notably, the GWAS SNP rs4415084 

correlated strongest with these genes compared to other GWAS SNPs (MRPS30, 

𝑝 = 1.39 × 10−5 ; RP11-53O19.1, 𝑝 = 6.19 × 10−6 ; RP11-53O10.3, 𝑝 = 1.23 ×

10−4; eQTL analysis in Methods; Fig. 3a). Furthermore, rs4415084 was the only 
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GWAS SNP that remained significant after Bonferroni correction (Supplementary 

Table 4).  

 

It should be noted that the three genes are likely co-expressed, as RP11-53O19.1 and 

MRPS30 share a divergent promoter and RP11-53O19.3 is contained in several 

elongated transcripts of MRPS30 (Supplementary Fig. 3). As RP11-53O19.3 might 

be a processed transcript of MRPS30, our subsequent analyses focused only on 

MRPS30 and RP11-53O19.1. The positive correlation between the number of risk 

alleles and the expression level of these target genes was also confirmed in both 

isoform-level eQTL analysis in TCGA data (Supplementary Table 6) and gene-level 

eQTL analysis in GTEx normal breast tissue (MRPS30,  𝑝 = 5.46 × 10−3 ; RP11-

53O19.1, 𝑝 = 4.14 × 10−4; Supplementary Fig. 4). Together, these results showed 

that all three GWAS SNPs in the 5p12 region may target the same set of genes within 

the TAD, with rs4415084 displaying the strongest effect.  

 

LCASE detects higher MRPS30/RP11-53O19.1 expression on the risk chromosome 

Since eQTL analysis is only correlative and cannot distinguish between trans-

regulation and cis-regulation, we sought evidence for cis-regulation by utilizing 

heterozygous exonic/UTR SNPs properly phased with the GWAS SNPs (Fig. 3b; 

Methods). We first examined all common exonic variants ( 𝑀𝐴𝐹 ≥ 0.01 , 1000 

Genomes Phase 3, EUR) in the protein-coding gene MRPS30 and found three SNPs 

suitable for LCASE analysis (rs61754779 and rs34522103 in exons; rs79210252 in 

3’UTR; Fig. 3c). There were five patients with heterozygous genotypes at both the 

GWAS SNP rs4415084 (C/T) and the SNP rs61754779 (G/C) located in the first exon. 

Among these five, two were removed because of uncertain phasing. The risk 
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haplotypes in these three patients were all rs61754779-G|rs4415084-T; equivalently, 

all of the protective haplotypes were rs61754779-C|rs4415084-C. RNA-seq read 

coverage at this exonic SNP displayed a significantly higher transcription activity 

from the risk haplotype in two patients (𝑝 = 1.33 × 10−4, 𝑝 = 9.72 × 10−17; one-

sided binomial test; Fig. 3c), but the skew in the third patient was not significant 

( 𝑝 = 0.64 ). Similar analyses at the exonic SNPs rs34522103 and rs79210252 

identified a different set of three patient samples that showed the same direction of 

transcription imbalance towards the risk haplotype, and the skew was statistically 

significant in two of these patients (rs34522103:  𝑝 = 6.71 × 10−47 ; rs79210252: 

𝑝 = 1.22 × 10−3, 𝑝 = 0.28; one-sided binomial test; Fig. 3c). 

 

Although the LCASE in MRPS30 was significant in several patients, the sample size 

was small, because exonic SNPs were generally rare in the genome. We thus sought 

for more evidence in MRPS30 ASE by analyzing additional SNPs in the non-coding 

RNA (ncRNA) located at the 3’ end of MRPS30 (GENCODE track, Supplementary 

Fig. 3). De novo assembly of transcripts using StringTie (41) on tumor RNA-seq 

reads revealed multiple MRPS30 elongated transcripts covering both MRPS30 3’ 

ncRNA and RP11-53O19.3 (Supplementary Fig. 3), suggesting that these two 

ncRNAs could arise from abnormal elongation of the protein-coding MRPS30 gene. 

This elongation hypothesis was also supported by high correlation in expression level 

between MRPS30 and RP11-53O19.3 (𝑟 = 0.95).  

 

We therefore tested whether there were additional LCASE SNPs falling in this 

elongated region and found four transcribed SNPs that could be phased accurately in a 

large number of patient samples (𝑛 = 23, 𝑛 = 248, 𝑛 = 238, 𝑛 = 240, respectively). 
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Consistent with the analysis of exonic SNPs, all of these SNPs in the elongated region 

displayed significantly higher transcription activity on the risk chromosome (𝑝 =

9.5 × 10−7, 𝑝 = 5.5 × 10−13, 𝑝 = 7.7 × 10−17, 𝑝 = 3.2 × 10−14,  respectively; 

Wilcoxon signed-rank test; Fig. 3d; Supplementary Fig. 5). Similar analyses in 

RP11-53O19.3 found that five out of eight transcribed SNPs showed a skew towards 

the risk chromosome, while two other SNPs close to the 3’ end displayed an opposite 

trend (Supplementary Fig. 6). Together, the eQTL and LCASE analyses thus 

demonstrated that the breast cancer risk allele rs4415084-T was associated with 

increased MRPS30 and RP11-43O19.1/3 expression among ER+ breast cancer 

patients in a cis-regulating manner (Fig. 3c, d; Supplementary Fig. 5, 6, 7). 

 

Prioritization of candidate SNPs 

We next prioritized candidate LD SNPs using epigenetic information. We gathered 

123 variants in high LD (𝑟2 ≥ 0.8, 1000 Genomes Phase 3, EUR) with any of the 

three GWAS SNPs rs4415084, rs10941679 or rs7716600, including the GWAS SNPs 

themselves (Fig. 2). Using the DNase I hypersensitivity (DHS) data from ENCODE 

in two breast cancer cell lines (MCF-7 and T-47D) (24,42) (Fig. 2), we found that 

sixteen of these SNPs resided in DHS peaks, all of them being in high LD with 

rs4415084. Among the sixteen SNPs, three SNPs were located near the center of DHS 

peaks (Supplementary Fig. 8) and were thus prioritized for further investigation in 

motif analysis and TF correlation analysis.  

 

rs4321755 is a candidate functional SNP creating a GATA3 binding motif 

Analyzing the prioritized candidate SNPs provided multiple lines of evidence for 

rs4321755 (chr5:44646195; about 163 kb upstream of MRPS30 transcription start site 
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(TSS)) being the functional SNP. The risk allele of SNP rs4321755 could be 

determined to be T, because this SNP was in high LD with GWAS rs4415084 

(𝑟2 = 0.988, 1000 Genomes Phase 3, EUR), and rs4321755-T was the allele in phase 

with the GWAS risk allele rs4415084-T. First, our motif analysis showed that the risk 

allele rs4321755-T created a GATA3 binding motif; the 9bp sequence covering 

rs4321755 matched a GATA3 motif only when it harbored the allele rs4321755-T, 

and not when it contained the alternative allele rs4321755-C (Fig. 4a, FIMO 𝑝 =

1.59 × 10−4). We further confirmed that the T-to-C conversion at the SNP resulted 

in a dramatic frequency drop from 93.7% to 0.0% in the GATA3 PWM, which was a 

significant change based on both mutation simulations (𝑝 = 0.003; Supplementary 

Methods), and ChIP-seq k-mer enrichment analysis (𝑝 = 0.025, Chi-squared test; 

Supplementary Methods).  

 

Second, GATA3 showed a consistent pattern in the TF-target gene correlation 

analysis: among the TCGA patients, GATA3 expression positively correlated with the 

expression levels of predicted target genes MRPS30, RP11-53O19.1 and RP11-

53O19.3, supporting GATA3’s role as a transcription activator (Fig. 4b). Furthermore, 

the positive correlation was strongest (and above 𝑟+2𝜎  for MRPS30 and RP11-

53O19.3) in patients carrying the rs4321755-T/T genotype, moderate in patients with 

the rs4321755-C/T genotype, and weakest in patients with the rs4321755-C/C 

genotype (Fig. 4b), consistent with our model of enhancer-activating risk allele 

(Supplementary Fig. 2). This correlation trend implied that the regulation mediated 

by GATA3 was strongest when two copies of GATA3 motif existed at the SNP on 

both paternal and maternal chromosomes, while the regulation was weakest when 

both GATA3 binding sites at the SNP were disrupted.  
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We next sought direct experimental evidence of GATA3 binding at the predicted 

causal SNP. Consistent with our prediction, we found that rs4321755 was located at 

the center of a peak in the T-47D GATA3 ChIP-seq data from ENCODE (q-value 

= 10−4, 2bp from the summit; Fig. 4c). Moreover, FOXA1 and PGR ChIP-seq in T-

47D also showed co-binding with GATA3 near rs4321755, supporting that this SNP 

indeed lies within an active regulatory region in breast cancer, given that FOXA1 is a 

pioneer factor in ER+ breast cancers (43) and PGR can interact with ER (44) (Fig. 4c); 

ESR1 ChIP-seq showed no direct binding of ER itself near rs4321755 (24) 

(GSE32465). Furthermore, this regulatory region was evolutionarily conserved (100 

vertebrates base-wise conservation by PhyloP (45), Fig. 4d), indicating its important 

role retained through evolution. To measure GATA3 ASB, we imputed the genotypes 

and found T-47D to be heterozygous at rs4321755. The copy number of the segment 

containing the SNP suggested that T-47D had no deletion or amplification at this 

locus, informing that the null hypothesis should be unbiased binding between the two 

alleles (Methods). We obtained and deduplicated DNase-seq and multiple TF ChIP-

seq reads for ASB analysis in T-47D. As shown in Fig. 4e, GATA3 ChIP-seq reads 

contained more of the risk allele rs4321755-T than the protective allele rs4321755-C 

(𝑝 = 0.019, one-sided binomial test). DNase-seq and PGR ChIP-seq also showed 

significantly more reads with T than C (DNase-seq, 𝑝 = 0.032; PGR, 𝑝 = 0.002; 

one-sided binomial test); FOXA1 had a similar imbalance, although the 𝑝-value was 

not significant due to low coverage at the SNP (Fig. 4c, e). Quite interestingly, MCF-

7, which was homozygous for the protective allele C at rs4321755, had a closed 

chromatin configuration at the SNP (Supplementary Fig. 8). Thus, the SNP likely 

contributed to the lack of GATA3 binding in MCF-7, potentially jointly with 
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GATA3’s impaired DNA-binding ability caused by a heterozygous frameshift 

mutation in MCF-7 (46). Together, these findings provided experimental evidence 

that the putative causal SNP rs4321755 might not only influence GATA3 ASB, but 

also modulate differential chromosomal accessibility and, thus, enhancer activity.  

 

We next explored available chromatin interaction data to assess potential long-

distance enhancer-promoter interactions, since the candidate SNP rs4321755 was 

about 163 kb away from the MRPS30 TSS. However, rs4321755 was in DHS only in 

the T-47D cell line, for which no GATA3 or other ChIA-PET data were available. In 

MCF-7, data were available for Hi-C (21) and ChIA-PET of breast cancer-related 

factors, such as ESR1 and CTCF (47). However, no significant chromatin interactions 

originating from the regulatory region were observed in MCF-7, probably because 

this enhancer was specific to T-47D and was not accessible in MCF-7 which carried 

the C/C genotype at rs4321755 (Supplementary Fig. 8). Comparing the Hi-C data in 

MCF-7 versus T-47D at 40 kb resolution using edgeR (48), we found a significantly 

higher contact count in the heterozygous T-47D than the homozygous MCF-7 

between the bin containing rs4321755 and the bins spanning MRPS30 (edgeR 

𝐹𝐷𝑅 < 1 × 10−2 ) and RP11-53O19.1 (edgeR 𝐹𝐷𝑅 < 1 × 10−4 ; Supplementary 

Methods and Supplementary Table 7). 

 

Discussion 

This study presented a computational framework for systematically investigating the 

functional consequences of GWAS SNPs. We applied our method to a breast cancer 

susceptibility region in 5p12, and discovered a causative SNP with multiple lines of 

evidence supporting its function in modulating GATA3 binding affinity. This 
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causative SNP potentially explained the molecular mechanism of one 5p12 GWAS 

SNP, rs4415084, while the other two GWAS SNPs in the 5p12 region had no 

candidate SNPs found in open chromatin. It is currently unclear whether these three 

GWAS SNPs function through the same or independent regulatory elements. For 

instance, the risk allele G of rs10941679 was completely contained in the background 

of the risk allele rs4415084-T that had higher allele frequency and thus broader 

impact in population (233 out of 234 patients with rs10941679-G carry rs4415084-T; 

rs10941679 MAF: 0.23; rs4415084 MAF: 0.41; 1000 Genomes Project Phase 3, EUR 

(18)). Moreover, Stacey et al. (11) showed that the risk in 5p12 could be explained by 

either rs4415084 or rs10941679, with the significance of rs4415084-T remaining after 

correcting for rs10941679-G and vice versa. Although a previous study found that the 

GWAS SNP rs10941679 itself could be causal (12), this particular SNP was not in 

open chromatin regions of the breast cancer cell lines that we examined 

(Supplementary Fig. 8). Another study reported correlation between our target gene 

MRPS30 and rs7716600 genotype, but no candidate causative SNPs in TF binding 

sites were discussed (49). Although the breast cancer susceptibility harbored in 5p12 

is not totally understood, we here propose one functional SNP which may directly link 

rs4415084 to the regulation of predicted target genes. 

 

Our integrative approach facilitated the identification of putative target genes by 

combining eQTL and LCASE analysis. We found breast cancer-specific TADs 

containing GWAS SNPs and performed intra-TAD eQTL analysis. As TADs are 

thought to provide physical subdivisions of cis-regulation, this approach should help 

reduce the number of false positives that currently challenge the traditional eQTL 

analysis. In our LCASE analysis, we controlled for phasing quality by removing 
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samples that could not be phased confidently upon simulation, enabling a direct 

measurement of differential transcription activity from two local chromosome copies 

harboring different GWAS alleles. The target genes identified by our method were 

already implicated in cancer: the protein-coding gene MRPS30, closely related to 

mitochondrial activity, was also linked to the 5p12 risk variants (rs10941679 and 

rs7716600) in earlier studies (12,49). Similarly, the candidate target lncRNA RP11-

53O19.1 was previously found to have significantly higher expression in luminal A 

(ER+) breast cancers compared to other subtypes (12). Even though the expression 

levels of these target genes may be directly modulated by the identified SNP, cancer 

is a complex multigenic disease, and understanding how the altered expression levels 

contribute to cancer predisposition requires further investigation, likely involving a 

systems-level approach. 

  

Our framework predicted candidate (causative SNP, TF, target gene) triplets to 

address the challenging problem of discovering functional SNPs that, we 

hypothesized, might disrupt TF binding activities (Fig. 5). We integrated cell type-

specific epigenetics profiles, motif analysis, and expression correlation signatures to 

reduce false positives. Our method actually yielded a ranked list of candidate TFs. 

Our top candidate GATA3 was validated through GATA3 ChIP-seq data and ASB 

analysis. Besides GATA3, TCF7L1, NR3C1, and ETS1 also qualified as candidate 

TFs when the TF-gene correlation thresholds was chosen to be less stringent 

(Supplementary Fig. 8). These predictions would benefit from future ChIP-seq data 

as they become available and also from imputing binding profiles (50). Currently, a 

key challenge in annotating functional regulatory elements is the lack of 3D 

chromatin interaction data that can help validate the physical interaction of predicted 
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enhancer-promoter pair. For this study, GATA3 ChIA-PET data in T-47D, currently 

missing, would be most suitable for validating the predicted interaction between the 

identified enhancer and MRPS30 promoter.  

 

Conclusion and perspectives 

We present an integrative computational method using genomic and epigenomic data 

to identify causative regulatory variants that may directly modulate cancer 

predisposition. Application of our method to a breast cancer susceptibility region in 

5p12 reveals the intergenic SNP rs4321755, in LD with the GWAS SNP rs4415084, 

as the candidate causative variant. We propose that the risk allele rs4321755-T 

significantly increases GATA3 binding affinity and therefore results in up-regulation 

of the predicted target genes MRPS30 and RP11-53O19.1. Our computational 

framework can be extended to investigate other genetic variants modulating cancer 

susceptibility, contributing to understanding new pathways in tumorigenesis and 

developing personalized prevention of cancer.  
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Figure Legends 

Figure 1. (a) Schematic representation of the integrated analysis workflow for 

identifying (causative SNP, TF, target gene) triplets. For inferring target genes (left 

part), eQTL analysis and a modified version of allele-specific expression analysis 

using the TCGA data are combined. For identifying causative SNPs and 

corresponding TFs (right part), epigenetics information, motif analysis and TF-target 

expression correlation analysis are used to filter the list of candidate causative 

variants. ChIP-seq data, allele-specific binding events and 3D chromatin interaction 

data are analysed when available. SNP: single-nucleotide polymorphism; eQTL: 

expression quantitative trait loci; LCASE: local chromosome allele-specific 

expression; LD: linkage disequilibrium; DHS: DNase I hypersensitive sites; TF: 

transcription factor; ASB: allele-specific binding; ChIA-PET: Chromatin Interaction 

Analysis by Paired-End Tag Sequencing; Hi-C: High-throughput chromosome 

conformation capture. (b) Visual illustration of the genomic analysis pipeline.  

Candidate SNPs are selected among the SNPs in strong LD with a GWAS SNP 

(yellow block) by overlapping with DHS (top track). The entire analysis is restricted 

to the topologically associated domain (TAD) containing the GWAS SNP. 

 

 

Figure 2. Linkage structure and epigenetic annotation in the 5p12 region. Top triangle 

shows the linkage (color-coded by 𝑟2 value) among 5p12 SNPs ordered according to 

their genomic locations. Middle track shows genes annotated by GENCODE v19. In 

the lower tracks, three GWAS SNPs in the 5p12 region are shown, followed by 

ChromHMM enhancer annotations in the breast cancer cell line MCF-7 and human 

mammary epithelial cells (HMEC). DNase I hypersensitive sites in T-47D and MCF-7 

are also shown to represent open chromatin regions. 

 

 

Figure 3. The risk allele of the GWAS SNP rs4415084 correlates with elevated 

MRPS30/RP11-53O19.1 expression. (a) Violin plots of MRPS30 and RP11-53O19.1 

expression levels divided into the imputed genotypes at rs4415084, using the TCGA 

ER+ breast cancer patient data. The 𝑝-values are for the multivariate linear regression 

coefficients of genotype. See Supplementary Table 4 for a full list of eQTL genes 

and GWAS SNPs in 5p12. (b) A schematic representation of local chromosome 

allele-specific expression (LCASE) analysis. For a certain exonic SNP of interest, we 

obtain all patients who have heterozygous genotypes both at the GWAS SNP and at 

the exonic SNP. Haplotype phasing is performed for the chromosome segment 

covering the GWAS SNP, the exonic SNP and all intermediate SNPs (Methods). The 

reference and alternative alleles of a biallelic SNP are denoted as 0 and 1, 

respectively. In this figure, patient 1 and patient 2 have the 1 allele of the exonic SNP 

phased with the GWAS risk allele, whereas patient 𝐾 has the 0 allele. RNA-seq read 

coverage is then counted in each patient to measure differential transcription activity 

between the risk chromosome (red) and the protective chromosome (blue). (c) 

LCASE analysis of exonic SNPs in the protein-coding gene MRPS30. The proportion 

of reads containing the protective alleles are plotted with the confidence intervals. 

Four of the six patient samples show significantly fewer reads emanating from the 

chromosome harboring the protective allele of rs4415084 (one-sided binomial test; 

𝑝 = 1.3 × 10−4 , 𝑝 = 9.7 × 10−17  for patient 1 and patient 2 at rs61754779, 

respectively; 𝑝 = 6.7 × 10−47 for patient 4 at rs34522103; 𝑝 = 1.2 × 10−3 for patient 

5 at rs79210252), while patient 3 and patient 6 have non-significant 𝑝-values. (d) The 
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genomic locations of LCASE SNPs in the protein-coding MRPS30 and MRPS30 3’ 

non-coding transcript. The 𝑝-values are from Wilcoxon signed-rank test with the red 

color showing transcription preference towards the risk chromosome. 

 

Figure 4. The predicted causal SNP rs4321755 in LD with the GWAS SNP 

rs4415084 may regulate GATA3 binding. (a) Subsequence containing the risk allele T 

of rs4321755 matches the GATA3 motif, while the protective allele C disrupts the 

motif. The risk and protective alleles are determined by phasing with the alleles of 

GWAS SNP rs4415084 (𝑟2 = 0.988). (b) GATA3 expression positively correlates 

with predicted target gene expression. The correlation structure depends on the 

rs4321755 genotype status; i.e., as the number of risk allele increases, the correlation 

also increases. (c) ChIP-seq and DNase-seq data in T-47D show that rs4321755 is at 

the center of GATA3, FOXA1, and DNase I peaks (two replicate experiments of 

DNase-seq are shown: ENCODE accessions ENCFF001EGW and ENCFF001EHA). 

Shown for each experiment are the read coverage and raw aligned reads (positive 

strand: yellow; negative strand: cyan). In the read coverage figure, the range of y-axis 

values is indicated on top right, and the coverage of the putative causative SNP is 

color-coded based on the risk (red) and protective (blue) allele counts. (d) Zoomed-in 

view of ENCODE TF binding and PhyloP conservation track near rs4321755. (e) 

GATA3 ChIP-seq, PGR ChIP-seq and DNase-seq data show a significant skew 

towards the rs4321755-T risk allele. Replicates are pooled together and reads are 

deduplicated; the 𝑝-values are calculated by one-sided binomial test.  

 

 

Figure 5. An illustration of the regulation model for MRPS30/RP11-53O19.1. The 

top chromosome carrying the protective allele C of the causal SNP rs4321755 has a 

disrupted GATA3 binding motif, thereby weakening the association between 

MRPS30/RP11-53O19.1 divergent promoter and the enhancer harboring the SNP. By 

contrast, the bottom chromosome carrying the risk allele rs4321755-T acquires a 

strong GATA3 motif, resulting in stronger binding of GATA3 and recruitment of 

other cofactors like FOXA1 and PGR, which together make this enhancer more active 

in regulating its target genes MRPS30 and RP11-53O19.1 via chromatin looping. 
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