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Abstract

Previous genome-wide association studies (GWAS) have
identified several common genetic variants that may significantly
modulate cancer susceptibility. However, the precise molecular
mechanisms behind these associations remain largely unknown;
it is often not clear whether discovered variants are themselves
functional or merely genetically linked to other functional var-
iants. Here, we provide an integrated method for identifying
functional regulatory variants associated with cancer and their
target genes by combining analyses of expressionquantitative trait
loci, a modified version of allele-specific expression that system-
atically utilizes haplotype information, transcription factor
(TF)–binding preference, and epigenetic information. Applica-
tion of ourmethod to a breast cancer susceptibility region in 5p12
demonstrates that the risk allele rs4415084-T correlates with
higher expression levels of the protein-coding genemitochondrial
ribosomal protein S30 (MRPS30) and lncRNARP11-53O19.1.We
propose an intergenic SNP rs4321755, in linkage disequilibrium

(LD) with the GWAS SNP rs4415084 (r2 ¼ 0.988), to be the
predicted functional SNP. The risk allele rs4321755-T, in phase
with the GWAS rs4415084-T, created a GATA3-binding motif
within an enhancer, resulting in differential GATA3 binding
and chromatin accessibility, thereby promoting transcription of
MRPS30 and RP11-53O19.1. MRPS30 encodes a member of
the mitochondrial ribosomal proteins, implicating the role of
risk SNP in modulating mitochondrial activities in breast cancer.
Our computational framework provides an effective means to
integrate GWAS results with high-throughput genomic and
epigenomic data and can be extended to facilitate rapid
functional characterization of other genetic variants modulating
cancer susceptibility.

Significance: Unification of GWAS results with information
fromhigh-throughput genomic and epigenomic profiles provides
a direct link between common genetic variants and measurable
molecular perturbations. Cancer Res; 78(7); 1579–91. �2018 AACR.

Introduction
Genome-wide association studies (GWAS) have identified

thousands of common genetic variants associated with various
traits and diseases, including cancer (1). However, most of these
variants lie in noncoding regions of the genome where a direct
link to gene function or regulation is difficult to assess (2).
Furthermore, it is often unclear whether the true molecular
perturbations associated with carcinogenesis, cancer progres-
sion, or therapeutic response indeed lie in the reported GWAS
variants themselves or some other linked genetic variants. As a
result, discovering the direct functional consequences of genetic
variation at GWAS loci has been a critical missing step in
utilizing the rich GWAS results to advance cancer research. We
here address this important challenge by presenting an
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Major Findings
We developed a computational framework for integrating

genome-wide association study results with heterogeneous
cancer genomic data and tissue-specific epigenetic data to
facilitate the discovery of causative variants functioning
through long-distance gene regulation. Applied to a breast
cancer susceptibility region in 5p12, our method provides
strong support for a putative causative SNP that is predicted to
modulate GATA3 binding and to regulate the expression of
MRPS30 and nearby lncRNAs.
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integrative computational framework that can facilitate the
rapid identification of candidate functional regulatory variants
in open chromatin regions and their target genes.

Some approaches are currently known for investigating candi-
date target genes and causative SNPs of GWAS variants, but they
usually yieldmany false positives (3, 4). For identifying candidate
target genes, two popular approaches correlate gene transcription
level with the variants across a population of patients: one is
expressionquantitative trait loci (eQTL) analysis and the second is
allele-specific expression (ASE) analysis. Both methods make use
of genotype and mRNA transcription profiles in large patient
cohorts available from various databases such as The Cancer
Genome Atlas (TCGA). The first method has been successful for
identifying genes that are correlated in overall mRNA level with
the GWAS variant genotypes. For example, Li and colleagues (5)

performed eQTL analysis on estrogen receptor–positive (ERþ)
breast cancer data and found SNPs correlatingwith the expression
of essential genes, such as ESR1 and c-MYC. However, traditional
eQTL analysis is only correlative and cannot distinguish between
direct and secondary target genes. The ASE method uses patients
who are heterozygous at a givenGWAS SNP and tests for direct cis-
regulated genes showing an imbalance in transcription activity
between the two separate chromosome copies harboring different
alleles of the variant. Such an imbalance is typically assessed from
RNA sequencing (RNA-seq) data by counting the allele-specific
coverage of exonic SNPs present in candidate genes within a
certain distance from the GWAS SNP. Most studies to date,
however, use unphased ASE analysis, that is, the exonic SNPs
showing an allelic skew are not phased with the GWAS variant
(5–7), thereby losing key information about whether the GWAS

Quick Guide to Equations and Assumptions
Because the majority of GWAS variants lie in noncoding regions of the human genome where a direct link to gene function

is not obvious, we searched for [causative SNP, transcription factor (TF), target gene] triplets under the model of gene
regulation by enhancers, in which the SNP interferes with the binding affinity of a key TF. With this assumption, we built a
regulation model for a breast cancer susceptibility locus harboring three GWAS SNPs in the 5p12 region. To infer candidate
target genes, we first performed expression quantitative trait loci (eQTL) analysis by regressing gene expression levels against
two covariates: genotype status at a given GWAS SNP and copy number of the gene. For each pair of i 2 fGWAS SNPs in 5p12}
and j 2 fgenes in 5p12 TAD}, the eQTL model can be expressed as:

Ej ¼ aij þ bij Gi þ g ij CNj þ �ij;

where Ej ¼ log2ðFPKMj þ 1Þ is the expression level of gene j, Gi 2 f0; 1;2g the genotype status of SNP i indicating the number
of risk alleles, CNj the copy number of gene j, aij the intercept, and �ij the error term. Genes with FPKM � 1 (FPKM: mean
expression among tumor samples) and pGij � a (pGij : p-value of bij ; a ¼ 0.05) were called as significant eQTL target genes.

Bonferroni correction for multiple hypothesis testing was further applied using pGij � a
n , where n is the total number of genes

tested in the TAD (n¼22, thus a
n ¼ 0:0023).

To identify cis-regulated target genes, we tested local chromosome allele-specific expression (LCASE) using exonic SNPs
that were properly phased with the GWAS SNP i. For each exonic SNP m, we obtained a subset of K patients who had
heterozygous genotypes at both the GWAS SNP i and the exonic SNP m. For each patient k ðk 2 f1; . . . ;KgÞ, we identified the
risk allele of SNP m (riskm) and also its protective allele (prom) by phasing them to the risk or protective allele of the GWAS
SNP. Allelic coverage at the exonic SNP m was determined to obtain nðriskmÞ and nðpromÞ, the number of reads containing the
risk or protective allele, respectively. Depending on the sample size K, two statistics were used to test for transcription
imbalance between the two chromosome copies:

n riskmð Þ � binomial n riskmð Þ þ n promð Þ; p0 ¼ 0:5ð Þ; K < 5

n promð Þ � n riskmð Þ � Wilcoxon signed� rank; K � 5:

�

To discover causative SNPs, we reasoned that functional SNPs should localize within open chromatin regions in enhancers
and affect the binding affinity of a TF by changing its recognition motif. We thus obtained a list of candidate SNPs by
overlapping LD SNPs of GWAS variants (r2 � 0:8) with DNase I hypersensitive sites (DHS) measured in breast cancer cell
lines. For each candidate SNP, we scanned the two sequences harboring different alleles of the SNP with a set of position
weight matrices (PWM). Suppose that a sequence x of length Lmatched a PWM, where x ¼ ðx1; x2; . . . ; xk; . . . ; xL�1; xLÞ harbored
one allele of the candidate SNP at position k. Let xa ¼ ðx1; x2; . . . ; xak; . . . ; xL�1; xLÞ denote the sequence harboring the other
allele xak, and let pl;x denote the probability of nucleotide x at position l in the PWM. To quantify the effect of allele change
(xk ! xak) on the motif, the difference in motif scores was calculated as Dðx; xaÞ ¼ scoreðxÞ � scoreðxaÞ, where scoreðxÞwas defined
as

PL
l¼1 log pl;xl . We devised two approaches to measure the significance of D (x,xa). In the first approach of simulating neutral

mutations, we constructed an empirical null distribution of D (x,xa) by introducing random single-nucleotide mutations
n times (n ¼ 5;000) and calculated the empirical P value. In the second approach of analyzing differential k-mer enrich-
ment (with k ¼ L), we tested for a difference in the occurrence frequencies of x and xa between TF ChIP-seq peaks and control
regions sampled from breast cancer cell line DHS (c2 test).

Zhang et al.

Cancer Res; 78(7) April 1, 2018 Cancer Research1580

on January 24, 2019. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 19, 2018; DOI: 10.1158/0008-5472.CAN-17-3486 



variant attenuates or promotes target gene transcription. In lim-
ited studies utilizing phased ASE (8), phasing accuracy has not
been rigorously evaluated; as a result, testing for the consistency of
phased ASE across patients may lose power when incorrectly
phased haplotypes are used for some patients.

Our integrative approach improves upon these ideas in several
ways. First, we restrict eQTL analysis only to those genes that lie
within the same topologically associated domain (TAD) as a given
GWAS SNP. Because TADs are thought to represent physical
chromatin loops containing regulatory elements and their target
genes (9), restricting the analysis to GWAS locus–containing
TADs should help remove false positive genes and improve upon
the current practice of choosing an arbitrary distance cutoff (5).
We then apply ASE analysis on exonic SNPs properly phased with
GWAS SNPs by removing patient samples whose reconstructed
haplotypes show unstable phasing in our simulation study. This
filtering method, which we termed the local-chromosome allele-
specific expression (LCASE), effectively analyzes ASE on a local
chromosome segment that is in LD with a GWAS SNP and
increases statistical power by removing incorrect haplotypes from
consideration. To find the causal regulatory SNP linked to a given
GWAS SNP, we search for linked SNPs residing in functional open
chromatin regions and computationally assess the SNPs' effect on
candidate transcription factor (TF)–binding motifs, as we have
previously done to show that the two well-known point muta-
tions in the TERT promoter create new binding sites of GABP
to reactivate TERT transcription (10).

We demonstrate the utility of our method by applying it to a
breast cancer susceptibility region in 5p12, which is a GWAS
hotspot harboring three noncoding GWAS SNPs replicated in
previous studies (11–13). First, we show that all three GWAS
SNPs may be targeting the same genes, the protein-coding gene
MRPS30 and lncRNA RP11-53O19.1, both of which have been
implicated in cancer (12, 14, 15).MRPS30 encodes a member of
the mitochondrial ribosomal large subunits (14), suggesting the
risk SNP's role in modulating mitochondrial activities. The
lncRNA RP11-53O19.1, also known as breast cancer–associated
transcript 54 (BRCAT54), is overexpressed in luminal A breast
cancer subtype (ERþ; ref. 15), suggesting its specific role in ERþ

breast cancers. We then propose that an intergenic SNP, in LD
with one of the 5p12 GWAS SNPs, is the predicted functional
SNP. We provide multiple lines of evidence supporting that the
risk allele of the predicted functional SNP increases the binding
affinity of GATA3, an important TF known to cooperate with
ESR1 and FOXA1 in ERþ breast cancers (16). Although this
article focuses on the ERþ breast cancer risk hotspot in 5p12, the
described method for dissecting the functional consequences of
GWAS variants can be generalized to other noncoding loci
implicated in a variety of cancers or traits.

Materials and Methods
TCGA breast cancer data

Germline and tumor genotypes at tag SNPs from 979 patients
were downloaded from the TCGA Data Portal and subsequently
used for imputation. The following data were obtained from the
NCI Genomic Data Commons (GDC) Legacy Archive (17): 693
patients' tumor copy number segmentation data, 788 patients'
processed tumor gene expression data, and 795 ERþ breast cancer
patients' tumor RNA-seq raw reads. Data from normal tissue and
primary tumor were matched on the basis of patient barcodes.

Patients having all four types of data available were selected to
obtain a final set of 679 female ERþ breast cancer patients.

Genotype imputation
TCGA germline genotypes of tag SNPs measured by Affyme-

trix human SNP array 6.0 were mapped to 1000 Genomes
Project phase 3 (18) variants. For each patient, genotypes
with low quality (5th quantile in confidence score) were
excluded. Because none of the three GWAS SNPs (rs4415084,
rs10941679, rs7116600) were directly genotyped by the SNP
array, imputation was performed in the 5p12 region using
IMPUTE2 (19, 20) and the 1000 Genomes Project Phase 3
(October 2014 version; ref. 18) as a reference panel. Imputed
genotypes were retained if the maximum genotype probability
exceeded the threshold 0.9 and the minor allele frequency
(MAF) exceeded 0.01 (for high imputation quality; ref. 20).
To obtain a more accurate picture of germline genotypes, the
genotypes from normal blood rather than primary tumor were
used in all analyses to avoid miscalls from potential genotyping
errors and somatic mutations.

Chromosome interaction data and TAD
Hi-C data were obtained from GSE66733 (21) and GSE51687

(22) for MCF-7, and from GSE53463 (23) and the Encyclopedia
of DNA Elements (ENCODE; ref. 24) ENCSR549MGQ for T-47D.
MCF-7 TAD structures were determined on the basis of insulation
score fromHi-Cdata (GSE66733). The TAD information in T-47D
was obtained from the ENCODE dataset ENCFF075QYD. We
used the MCF-7 TAD information in the analysis, as the two
datasets were similar. MCF-7 ChIA-PET interactions mediated by
CTCF, ESR1, and POLR2A were obtained from ENCODE (24).

TCGA breast cancer eQTL analysis
We performed TCGA-based eQTL analysis by constructing a

multivariate linear model that regressed the expression level of
each gene against the copy number of the gene and the
genotype status at a given GWAS SNP locus. For the ith GWAS
SNP in 5p12, we encoded its germline genotype Gi as the
number of risk alleles (Gi 2{0, 1, 2}). To determine the copy
number of the jth gene residing within the 5p12 TAD region, we
took length-weighted average (sj) of tumor copy number seg-
ment data covering the gene and transformed it into copy

number CNj ¼ 2 � 2sj . The RNA-seq RPKM value of gene j was
log-transformed as Ej ¼ log2ðRPKMj þ 1Þ. Multivariate linear
regression (25), Ej ¼ aij þ bij Gi þ g ij CNj þ �ij, was then per-
formed for each pair of i 2 fGWAS SNPs in 5p12gand
j 2 fgenes in 5p12 TADg, where aij is the intercept and �ij the
error term. Genes with RPKM � 1 (RPKM: mean expression
among tumor samples) and pGij � a (pGij : p-value of bij ; a ¼
0.05) were called as significant eQTL target genes. Bonferroni
correction for multiple hypothesis testing was further applied
using pGij � a

n, where n is the total number of genes tested in the

TAD (n ¼ 22, thus a
n ¼ 0:0023).

LCASE analysis
We tested for within-patient differential transcription between

the two chromosome copies harboring different alleles of a given
GWAS SNP using a modified version of ASE analysis, which we
termed LCASE. To distinguish between the transcripts from dif-
ferent chromosome copies, we utilized exonic SNPs (GENCODE
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v19; ref. 26) that were heterozygous based on imputation results.
For each exonic SNP, we selected a subset of patients with
heterozygous genotypes at both the GWAS SNP and the exonic
SNP. For each patient in this subset, we used SHAPEIT2 (27) to
determine the phase between the GWAS SNP and exonic SNP.We
denoted the risk andprotective alleles at theGWASSNP as risk and
pro, respectively, and denoted the reference and alternative alleles
of the exonic SNP under consideration as 0 and 1, respectively. To
remove uncertain phasing, we further sampled haplotypes n times
(n¼ 100) from the haplotypemodel generated by SHAPEIT2 and
computed the occurrence probability ðpriskj0; priskj1Þ of the two
phases, thereby removing patient samples with no dominant
phase as indicated by the condition maxðpriskj0; priskj1Þ < 0:9
(Supplementary Fig. S1). We then counted the allelic-specific
coverage of each exonic SNP from high-quality RNA-seq reads
(MAPQ � 20) and tested for transcription imbalance using two
statistical tests depending on the sample size K: binomial test
(when K < 5) and Wilcoxon signed-rank test (when K � 5).

Functional SNP prioritization
A list of GWAS variants in the 5p12 region was obtained from

theNHGRIGWASCatalog (28), and the risk alleles were extracted
fromStacey and colleagues (11) and Thomas and colleagues (13).
All common (MAF � 0.01) SNPs from 1000 Genomes Project
Phase 3 in high LD (r2 � 0:8) with any of the 5p12 GWAS SNPs
were selected for prioritization. All r2 valueswere calculatedon the
basis of the 1000 Genomes Project Phase 3 EUR population. For
SNPprioritization,DNase I hypersensitivity sites (DHS) inMCF-7
and T-47D were collected from the ENCODE (24) database,
including DHS under estradiol treatment (Supplementary Table
S1).Only those LDSNPs that overlappedwith a narrowpeak from
at least one of DHS replicate experiments were considered for
further investigation. We also used histone modification and TF-
binding profiles to facilitate functional SNP prioritization. His-
tone modification data were obtained from ENCODE and the
Gene Expression Omnibus (GEO) database (GSE26831,
GSE63109, and GSE69112). Chromatin immunoprecipitation
sequencing (ChIP-seq) data in MCF-7 and T-47D for TFs, includ-
ing ESR1, PGR, GATA3, and FOXA1 known to be important in
breast cancer, were obtained from ENCODE and GEO (Supple-
mentary Table S2). Raw ChIP-seq data from GEO were mapped
using BWA (default parameters; ref. 29), and peaks were called
using MACS2 (TF ChIP-seq: default parameters; histone modifi-
cation ChIP-seq: broadpeak mode, 0.1 FDR; ref. 30).

Motif analysis
We collected TF position weight matrices (PWM) from

HOCOMOCO Human v10 (31), FACTORBOOK (32, 33),
TRANSFAC (34), JASPAR vertebrates (35), and Jolma2013 (Sup-
plementary Table S3; ref. 36). To identify motifs potentially
affected by a SNP, we used the program FIMO (version 4.12.0;
ref. 37) to scan the two 50-bp sequences centered at the different
alleles of each candidate SNP (FIMO threshold 10�3). We then
sought for candidate SNP-TF pairs for which the sequence har-
boring one allele of the SNP matched the TF motif, whereas the
sequence harboring the other allele did not. For each SNP–TF
pair, the statistical significance of creating or disrupting the motif
via the SNP was evaluated with two approaches: mutation simu-
lations and, when available, ChIP-seq k-mer enrichment analysis.
The first approach compared the change in motif score caused by

the SNP against the changes caused by random single-nucleotide
mutations simulated 5,000 times, where the motif score was

defined as
PL

l¼1 log pl;nl (pl;nl : the probability of nucleotide
nl at position l in the PWM of length L; Supplementary Methods).
The second approach tested for the differential enrichment of
k-mers (e.g., k ¼ L) harboring different alleles by comparing
their occurrence frequency in TF ChIP-seq peaks against that in
control regions (random open chromatin regions in MCF-7 or
T-47D; c2 test; Supplementary Methods; ref. 38).

TF-target correlation analysis
The candidate SNP–TF pairs from motif analysis were further

filtered on the basis of the correlation structure between each
candidate TF and its eQTL target gene. A list of human TFs was
obtained from AnimalTFDB (39), and only the expressed TFs
(RPKM � 1 among ERþ breast cancer patients) overlapping with
the candidates from motif analysis were further considered and
divided into three groups: candidate activators (Pearson correla-
tion coefficient r � rþ2s), candidate repressors (r � r�2s), and
uncorrelated TFs (r�2s < r < rþ2s), where the thresholds r�2s and
rþ2s were chosen based on the distribution of correlation coeffi-
cients between random pairs of TF and non-TF genes
(r�2s ¼ �0:337; rþ2s ¼ 0:409; Supplementary Methods). We
then narrowed the list of candidate TFs based on four models
shown in Supplementary Fig. S2. In this article, we focused on an
example of enhancer-activating risk allele. In this case, where the
target gene expression was positively correlated with the number
of GWAS risk allele, we selected TFs passing the following filters
as candidate activators: (i) the risk allele of the candidate
enhancer SNP significantly increased the motif score of the TF;
(ii) the TF expression level was positively correlated (r � rþ2s)
with the target gene expression level among patients having two
copies of the risk allele; (iii) the TF-target gene expression corre-
lation in patients carrying two copies of the risk allele (two copies
of the motif) was stronger than that in patients carrying no risk
allele (no motif).

TF allele-specific binding
For TFs with ChIP-seq data available in MCF-7 and T-47D, we

tested for allele-specific binding (ASB) by searching for a skew in
the read coverage of candidate heterozygous SNPs located within
peaks. The significance of a skew was measured by using the
binomial test assuming nobias. To determine the genotype status,
tag SNP data for MCF-7 and T-47D were obtained from CCLE
project (40), and imputation was performed using the same
pipeline described above. To check that the candidate loci have
no deletion or amplification events, which might complicate the
ASB analysis, copy number data for the cell lines were obtained
from CCLE (40) and ENCODE (GSE40698; ref. 24). ChIP-seq
reads from different replicates were combined and deduplicated.

Results
Integrative analysis framework for GWAS functional
characterization

We integrated multiple genomic analyses to identify sys-
tematically the triplets of functional SNP, corresponding TF
regulator, and target gene (Fig. 1A and B). Our main hypoth-
esis was that noncoding SNPs modulating cancer risk would
likely lie inside putative regulatory elements to promote or
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Figure 1.

A, Schematic representation of the integrated analysis workflow for identifying (causative SNP, TF, target gene) triplets. For inferring target genes (left),
eQTL analysis and a modified version of allele-specific expression analysis using the TCGA data are combined. For identifying causative SNPs and
corresponding TFs (right), epigenetics information, motif analysis, and TF-target expression correlation analysis are used to filter the list of candidate
causative variants. ChIP-seq data, allele-specific binding events, and 3D chromatin interaction data are analyzed when available. B, Visual illustration of
the genomic analysis pipeline. Candidate SNPs are selected among the SNPs in strong LD with a GWAS SNP (yellow block) by overlapping with DHS
(top track). The entire analysis is restricted to the TAD containing the GWAS SNP.
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attenuate the binding affinity of relevant TFs, which would be
reflected at the mRNA level of the target gene. A schematic
representation of our framework is shown in Fig. 1A. Target
genes were identified by using within-TAD eQTL and LCASE
analyses of GWAS SNPs, and functional SNP-TF candidates
were determined by integrating motif analysis, expression
correlation analysis, and epigenetic annotation of regulatory
regions (Materials and Methods) for GWAS SNPs and their
high LD SNPs.

5p12 GWAS risk alleles correlate with elevated
MRPS30/RP11-53O19.1 expression

We applied our computational framework to a breast cancer
susceptibility region in 5p12. As there are three ERþ breast cancer
GWAS SNPs in the 5p12 risk hotspot (Fig. 2; refs. 11, 13), we first
performed eQTL analysis for individual SNPs to investigate
whether they all targeted the samegenes.We restricted the analysis
to the TAD containing all three GWAS SNPs based on the MCF-7
TAD information (21). The 5p12 TAD region (chr5:43,480,001-
45,000,000, hg19) containing all threeGWAS SNPs encompassed
7 protein-coding genes and 15 noncoding RNAs (GENCODE
v19).Among them, theprotein-codinggeneMRPS30and lncRNAs
RP11-53O19.1 and RP11-53O19.3 showed significant eQTL cor-
relation (genotype effect P� 0.05) with all three GWAS SNPs, but
RP11-53O19.3 had only borderline significance with rs7716600
(Supplementary Tables S4 and S5). Notably, the GWAS SNP

rs4415084 correlated strongest with these genes compared with
other GWAS SNPs (MRPS30, P ¼ 1:39� 10�5; RP11-53O19.1,
P ¼ 6:19� 10�6; RP11-53O10.3, P ¼ 1:23� 10�4; eQTL analy-
sis in Materials and Methods; Fig. 3A). Furthermore, rs4415084
was theonlyGWASSNP that remained significant after Bonferroni
correction (Supplementary Table S4).

It should be noted that the three genes are likely coex-
pressed, as RP11-53O19.1 and MRPS30 share a divergent
promoter and RP11-53O19.3 is contained in several elong-
ated transcripts of MRPS30 (Supplementary Fig. S3). As
RP11-53O19.3 might be a processed transcript of MRPS30,
our subsequent analyses focused only on MRPS30 and
RP11-53O19.1. The positive correlation between the number
of risk alleles and the expression level of these target genes
was also confirmed in both isoform-level eQTL analysis in TCGA
data (Supplementary Table S6) and gene-level eQTL analysis
in GTEx normal breast tissue (MRPS30, P ¼ 5:46� 10�3;
RP11-53O19.1, P ¼ 4:14� 10�4; Supplementary Fig. S4).
Together, these results showed that all three GWAS SNPs in the
5p12 region may target the same set of genes within the TAD,
with rs4415084 displaying the strongest effect.

LCASE detects higherMRPS30/RP11-53O19.1 expression on the
risk chromosome

Because eQTL analysis is only correlative and cannot distin-
guish between trans-regulation and cis-regulation, we sought

Figure 2.

Linkage structure and epigenetic
annotation in the 5p12 region. Top
triangle shows the linkage (color-

coded by r2 value) among 5p12 SNPs
ordered according to their genomic
locations. Middle track shows genes
annotated by GENCODE v19. In the
lower tracks, three GWAS SNPs in the
5p12 region are shown, followed by
ChromHMM enhancer annotations in
the breast cancer cell line MCF-7 and
human mammary epithelial cells
(HMEC). DHSs in T-47D and MCF-7 are
also shown to represent open
chromatin regions.
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Figure 3.

The risk allele of the GWAS SNP rs4415084 correlates with elevated MRPS30/RP11-53O19.1 expression. A, Violin plots of MRPS30 and RP11-53O19.1 expression
levels divided into the imputed genotypes at rs4415084, using the TCGA ERþ breast cancer patient data. The P values are for the multivariate linear
regression coefficients of genotype. See Supplementary Table S4 for a full list of eQTL genes and GWAS SNPs in 5p12. B, A schematic representation
of LCASE analysis. For a certain exonic SNP of interest, we obtain all patients who have heterozygous genotypes both at the GWAS SNP and at the exonic
SNP. Haplotype phasing is performed for the chromosome segment covering the GWAS SNP, the exonic SNP, and all intermediate SNPs (Materials and
Methods). The reference and alternative alleles of a biallelic SNP are denoted as 0 and 1, respectively. In this figure, patient 1 and patient 2 have the 1
allele of the exonic SNP phased with the GWAS risk allele, whereas patient K has the 0 allele. RNA-seq read coverage is then counted in each patient
to measure differential transcription activity between the risk chromosome (red) and the protective chromosome (blue). C, LCASE analysis of exonic SNPs in
the protein-coding gene MRPS30. The proportion of reads containing the protective alleles is plotted with the confidence intervals. Four of the six
patient samples show significantly fewer reads emanating from the chromosome harboring the protective allele of rs4415084 (one-sided binomial test;

P ¼ 1:3� 10�4 , P ¼ 9:7� 10�17 for patient 1 and patient 2 at rs61754779, respectively; P ¼ 6:7� 10�47 for patient 4 at rs34522103; P ¼ 1:2� 10�3 for
patient 5 at rs79210252), whereas patient 3 and patient 6 have nonsignificant P values. D, The genomic locations of LCASE SNPs in the protein-coding
MRPS30 and MRPS30 30 noncoding transcript. The P values are from Wilcoxon signed-rank test with the red color showing transcription preference
toward the risk chromosome.
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evidence for cis-regulation by utilizing heterozygous exonic/
UTR SNPs properly phased with the GWAS SNPs (Fig. 3B;
Materials and Methods). We first examined all common exonic
variants (MAF � 0.01, 1000 Genomes Phase 3, EUR) in the
protein-coding geneMRPS30 and found three SNPs suitable for
LCASE analysis (rs61754779 and rs34522103 in exons;
rs79210252 in 30UTR; Fig. 3C). There were 5 patients with
heterozygous genotypes at both the GWAS SNP rs4415084
(C/T) and the SNP rs61754779 (G/C) located in the first exon.
Among these five, two were removed because of uncertain
phasing. The risk haplotypes in these 3 patients were all
rs61754779-G|rs4415084-T; equivalently, all of the protective
haplotypes were rs61754779-C|rs4415084-C. RNA-seq read
coverage at this exonic SNP displayed a significantly higher
transcription activity from the risk haplotype in 2 patients
(P ¼ 1:33� 10�4, P ¼ 9:72� 10�17; one-sided binomial
test; Fig. 3C), but the skew in the third patient was not
significant (P ¼ 0.64). Similar analyses at the exonic SNPs
rs34522103 and rs79210252 identified a different set of three
patient samples that showed the same direction of transcrip-
tion imbalance toward the risk haplotype, and the skew was
statistically significant in two of these patients (rs34522103:
P ¼ 6:71� 10�47; rs79210252: P ¼ 1:22� 10�3, P ¼ 0.28;
one-sided binomial test; Fig. 3C).

Although the LCASE in MRPS30 was significant in several
patients, the sample size was small, because exonic SNPs were
generally rare in the genome. We thus sought for more
evidence in MRPS30 ASE by analyzing additional SNPs in the
noncoding RNA (ncRNA) located at the 30 end of MRPS30
(GENCODE track, Supplementary Fig. S3). De novo assembly
of transcripts using StringTie (41) on tumor RNA-seq reads
revealed multiple MRPS30 elongated transcripts covering
both MRPS30 30 ncRNA and RP11-53O19.3 (Supplementary
Fig. S3), suggesting that these two ncRNAs could arise from
abnormal elongation of the protein-coding MRPS30 gene.
This elongation hypothesis was also supported by high cor-
relation in expression level between MRPS30 and RP11-
53O19.3 (r ¼ 0.95).

We therefore tested whether there were additional LCASE
SNPs falling in this elongated region and found four tran-
scribed SNPs that could be phased accurately in a large number
of patient samples (n ¼ 23, n ¼ 248, n ¼ 238, n ¼ 240,
respectively). Consistent with the analysis of exonic SNPs, all
of these SNPs in the elongated region displayed significantly
higher transcription activity on the risk chromosome
(P ¼ 9:5� 10�7; P ¼ 5:5� 10�13; P ¼ 7:7� 10�17; P ¼ 3:2� 10�14;

respectively; Wilcoxon signed-rank test; Fig. 3D; Supplementary
Fig. S5). Similar analyses in RP11-53O19.3 found that five out
of eight transcribed SNPs showed a skew toward the risk
chromosome, while two other SNPs close to the 30 end dis-
played an opposite trend (Supplementary Fig. S6). Together,
the eQTL and LCASE analyses thus demonstrated that the breast
cancer risk allele rs4415084-T was associated with increased
MRPS30 and RP11-43O19.1/3 expression among ERþ breast
cancer patients in a cis-regulating manner (Fig. 3C and D;
Supplementary Figs. S5–S7).

Prioritization of candidate SNPs
We next prioritized candidate LD SNPs using epigenetic

information. We gathered 123 variants in high LD (r2 � 0:8,
1000 Genomes Phase 3, EUR) with any of the three GWAS SNPs

rs4415084, rs10941679 or rs7716600, including the GWAS
SNPs themselves (Fig. 2). Using the DNase I hypersensitivity
(DHS) data from ENCODE in two breast cancer cell lines
(MCF-7 and T-47D; Fig. 2; refs. 24, 42), we found that 16 of
these SNPs resided in DHS peaks, all of them being in high LD
with rs4415084. Among the 16 SNPs, three SNPs were located
near the center of DHS peaks (Supplementary Fig. S8) and were
thus prioritized for further investigation in motif analysis and
TF correlation analysis.

rs4321755 is a candidate functional SNP creating a
GATA3-binding motif

Analyzing the prioritized candidate SNPs provided multiple
lines of evidence for rs4321755 [chr5:44646195; about 163 kb
upstream of MRPS30 transcription start site (TSS)] being the
functional SNP. The risk allele of SNP rs4321755 could be
determined to be T, because this SNP was in high LD with GWAS
rs4415084 (r2 ¼ 0:988; 1000 Genomes Phase 3, EUR), and
rs4321755-T was the allele in phase with the GWAS risk allele
rs4415084-T. First, our motif analysis showed that the risk allele
rs4321755-T created a GATA3-binding motif; the 9 bp sequence
covering rs4321755 matched a GATA3 motif only when it har-
bored the allele rs4321755-T, and not when it contained the
alternative allele rs4321755-C (Fig. 4A, FIMO P ¼ 1:59 � 10�4).
We further confirmed that the T-to-C conversion at the SNP
resulted in a dramatic frequency drop from 93.7% to 0.0% in
the GATA3 PWM, which was a significant change based on both
mutation simulations (P¼ 0.003; Supplementary Methods), and
ChIP-seq k-mer enrichment analysis (P ¼ 0.025, c2 test; Supple-
mentary Methods).

Second, GATA3 showed a consistent pattern in the TF-target
gene correlation analysis: among the TCGA patients, GATA3 ex-
pression positively correlated with the expression levels of pre-
dicted target genes MRPS30, RP11-53O19.1, and RP11-53O19.3,
supporting GATA3's role as a transcription activator (Fig. 4B).
Furthermore, the positive correlation was strongest (and above
rþ2s for MRPS30 and RP11-53O19.3) in patients carrying
the rs4321755-T/T genotype, moderate in patients with the
rs4321755-C/T genotype, and weakest in patients with the
rs4321755-C/C genotype (Fig. 4B), consistent with our model
of enhancer-activating risk allele (Supplementary Fig. S2).
This correlation trend implied that the regulation mediated by
GATA3 was strongest when two copies of GATA3 motif existed
at the SNP on both paternal and maternal chromosomes, while
the regulation was weakest when both GATA3-binding sites
at the SNP were disrupted.

We next sought direct experimental evidence of GATA3
binding at the predicted causal SNP. Consistent with our
prediction, we found that rs4321755 was located at the center
of a peak in the T-47D GATA3 ChIP-seq data from ENCODE
(q-value ¼ 10�4; 2bp from the summit; Fig. 4C). Moreover,
FOXA1 and PGR ChIP-seq in T-47D also showed cobinding
with GATA3 near rs4321755, supporting that this SNP indeed
lies within an active regulatory region in breast cancer, given
that FOXA1 is a pioneer factor in ERþ breast cancers (43) and
PGR can interact with ER (Fig. 4C; ref. 44); ESR1 ChIP-seq
showed no direct binding of ER itself near rs4321755
(GSE32465; ref. 24). Furthermore, this regulatory region was
evolutionarily conserved (100 vertebrates base-wise conserva-
tion by PhyloP; Fig. 4D; ref. 45), indicating its important role
retained through evolution. To measure GATA3 ASB, we
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Figure 4.

The predicted causal SNP rs4321755 in LD with the GWAS SNP rs4415084 may regulate GATA3 binding. A, Subsequence containing the risk allele T of
rs4321755 matches the GATA3 motif, while the protective allele C disrupts the motif. The risk and protective alleles are determined by phasing with

the alleles of GWAS SNP rs4415084 (r2 ¼ 0:988). B, GATA3 expression positively correlates with predicted target gene expression. The correlation
structure depends on the rs4321755 genotype status, that is, as the number of risk allele increases, the correlation also increases. C, ChIP-seq and DNase-seq
data in T-47D show that rs4321755 is at the center of GATA3, FOXA1, and DNase I peaks (two replicate experiments of DNase-seq are shown:
ENCODE accessions ENCFF001EGW and ENCFF001EHA). Shown for each experiment are the read coverage and raw aligned reads (positive strand,
yellow; negative strand, cyan). In the read coverage figure, the range of y-axis values is indicated at top right, and the coverage of the putative causative SNP is
color-coded based on the risk (red) and protective (blue) allele counts. D, Zoomed-in view of ENCODE TF binding and PhyloP conservation track near
rs4321755. E, GATA3 ChIP-seq, PGR ChIP-seq, and DNase-seq data show a significant skew toward the rs4321755-T risk allele. Replicates are pooled together
and reads are deduplicated; the P values are calculated by one-sided binomial test.

Regulatory Genomics of GWAS SNPs

www.aacrjournals.org Cancer Res; 78(7) April 1, 2018 1587

on January 24, 2019. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst January 19, 2018; DOI: 10.1158/0008-5472.CAN-17-3486 



imputed the genotypes and found T-47D to be heterozygous at
rs4321755. The copy number of the segment containing the
SNP suggested that T-47D had no deletion or amplification at
this locus, informing that the null hypothesis should be
unbiased binding between the two alleles (Materials and
Methods). We obtained and deduplicated DNase-seq and
multiple TF ChIP-seq reads for ASB analysis in T-47D. As
shown in Fig. 4E, GATA3 ChIP-seq reads contained more of
the risk allele rs4321755-T than the protective allele
rs4321755-C (P ¼ 0.019, one-sided binomial test). DNase-
seq and PGR ChIP-seq also showed significantly more reads
with T than C (DNase-seq, P ¼ 0.032; PGR, P ¼ 0.002; one-
sided binomial test); FOXA1 had a similar imbalance,
although the P value was not significant due to low coverage
at the SNP (Fig. 4C and E). Quite interestingly, MCF-7, which
was homozygous for the protective allele C at rs4321755,
had a closed chromatin configuration at the SNP (Supplemen-
tary Fig. S8). Thus, the SNP likely contributed to the lack of
GATA3 binding in MCF-7, potentially jointly with GATA3's
impaired DNA-binding ability caused by a heterozygous
frameshift mutation in MCF-7 (46). Together, these findings
provided experimental evidence that the putative causal SNP
rs4321755 might not only influence GATA3 ASB, but also
modulate differential chromosomal accessibility and, thus,
enhancer activity.

We next explored available chromatin interaction data to
assess potential long-distance enhancer–promoter interac-
tions, as the candidate SNP rs4321755 was about 163 kb away
from the MRPS30 TSS. However, rs4321755 was in DHS only
in the T-47D cell line, for which no GATA3 or other ChIA-PET
data were available. In MCF-7, data were available for Hi-C
(21) and ChIA-PET of breast cancer–related factors, such as
ESR1 and CTCF (47). However, no significant chromatin
interactions originating from the regulatory region were
observed in MCF-7, probably because this enhancer was spe-
cific to T-47D and was not accessible in MCF-7, which carried
the C/C genotype at rs4321755 (Supplementary Fig. S8).
Comparing the Hi-C data in MCF-7 versus T-47D at 40 kb
resolution using edgeR (48), we found a significantly higher
contact count in the heterozygous T-47D than the homozygous
MCF-7 between the bin containing rs4321755 and the bins
spanning MRPS30 (edgeR FDR < 1� 10�2) and RP11-
53O19.1 (edgeR FDR < 1� 10�4; Supplementary Methods;
Supplementary Table S7).

Discussion
This study presented a computational framework for system-

atically investigating the functional consequences of GWAS
SNPs. We applied our method to a breast cancer susceptibility
region in 5p12 and discovered a causative SNP with multiple
lines of evidence supporting its function in modulating GATA3-
binding affinity. This causative SNP potentially explained the
molecular mechanism of one 5p12 GWAS SNP, rs4415084,
while the other two GWAS SNPs in the 5p12 region had no
candidate SNPs found in open chromatin. It is currently unclear
whether these three GWAS SNPs function through the same or
independent regulatory elements. For instance, the risk allele G
of rs10941679 was completely contained in the background of
the risk allele rs4415084-T that had higher allele frequency and
thus broader impact in population (233/234 patients with

rs10941679-G carry rs4415084-T; rs10941679 MAF: 0.23;
rs4415084 MAF: 0.41; 1000 Genomes Project Phase 3, EUR;
ref. 18). Moreover, Stacey and colleagues (11) showed that the
risk in 5p12 could be explained by either rs4415084 or
rs10941679, with the significance of rs4415084-T remaining
after correcting for rs10941679-G and vice versa. Although a
previous study found that the GWAS SNP rs10941679 itself
could be causal (12), this particular SNP was not in open
chromatin regions of the breast cancer cell lines that we exam-
ined (Supplementary Fig. S8). Another study reported correla-
tion between our target geneMRPS30 and rs7716600 genotype,
but no candidate causative SNPs in TF-binding sites were
discussed (49). Although the breast cancer susceptibility har-
bored in 5p12 is not totally understood, we here propose one
functional SNP that may directly link rs4415084 to the regu-
lation of predicted target genes.

Our integrative approach facilitated the identification of
putative target genes by combining eQTL and LCASE analysis.
We found breast cancer–specific TADs containing GWAS SNPs
and performed intra-TAD eQTL analysis. As TADs are thought
to provide physical subdivisions of cis-regulation, this
approach should help reduce the number of false positives
that currently challenge the traditional eQTL analysis. In our
LCASE analysis, we controlled for phasing quality by removing
samples that could not be phased confidently upon simulation,
enabling a direct measurement of differential transcription
activity from two local chromosome copies harboring different
GWAS alleles. The target genes identified by our method were
already implicated in cancer: the protein-coding gene MRPS30,
closely related to mitochondrial activity, was also linked to the
5p12 risk variants (rs10941679 and rs7716600) in earlier
studies (12, 49). Similarly, the candidate target lncRNA
RP11-53O19.1 was previously found to have significantly
higher expression in luminal A (ERþ) breast cancers compared
with other subtypes (12). Even though the expression levels of
these target genes may be directly modulated by the identified
SNP, cancer is a complex multigenic disease, and understand-
ing how the altered expression levels contribute to cancer
predisposition requires further investigation, likely involving
a systems-level approach.

Our framework predicted candidate (causative SNP, TF,
target gene) triplets to address the challenging problem of
discovering functional SNPs that, we hypothesized, might
disrupt TF-binding activities (Fig. 5). We integrated cell type–
specific epigenetics profiles, motif analysis, and expression
correlation signatures to reduce false positives. Our method
actually yielded a ranked list of candidate TFs. Our top
candidate GATA3 was validated through GATA3 ChIP-seq
data and ASB analysis. Besides GATA3, TCF7L1, NR3C1, and
ETS1 also qualified as candidate TFs when the TF-gene
correlation thresholds were chosen to be less stringent
(Supplementary Fig. S8). These predictions would benefit
from future ChIP-seq data as they become available and
also from imputing binding profiles (50). Currently, a key
challenge in annotating functional regulatory elements is the
lack of 3D chromatin interaction data that can help validate
the physical interaction of predicted enhancer–promoter
pair. For this study, GATA3 ChIA-PET data in T-47D, cur-
rently missing, would be most suitable for validating the
predicted interaction between the identified enhancer and
MRPS30 promoter.
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Conclusion and Perspectives
We present an integrative computational method using geno-

mic and epigenomic data to identify causative regulatory variants
that may directly modulate cancer predisposition. Application of
ourmethod to a breast cancer susceptibility region in 5p12 reveals
the intergenic SNP rs4321755, in LD with the GWAS SNP
rs4415084, as the candidate causative variant. We propose that
the risk allele rs4321755-T significantly increases GATA3-binding
affinity and therefore results in upregulation of the predicted
target genes MRPS30 and RP11-53O19.1. Our computational
framework can be extended to investigate other genetic variants
modulating cancer susceptibility, contributing to understanding
new pathways in tumorigenesis and developing personalized
prevention of cancer.
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Figure 5.

An illustration of the regulation model
for MRPS30/RP11-53O19.1. The top
chromosome carrying the protective
allele C of the causal SNP rs4321755
has a disrupted GATA3-binding motif,
thereby weakening the association
between MRPS30/RP11-53O19.1
divergent promoter and the enhancer
harboring the SNP. In contrast, the
bottom chromosome carrying the risk
allele rs4321755-T acquires a strong
GATA3 motif, resulting in stronger
binding of GATA3 and recruitment of
other cofactors like FOXA1 and PGR,
which together make this enhancer
more active in regulating its target
genes MRPS30 and RP11-53O19.1 via
chromatin looping.
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