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Abstract

High-throughput bioinformatic analyses increasingly rely on pipeline frameworks to process sequence and metadata.
Modern implementations of these frameworks differ on three key dimensions: using an implicit or explicit syntax, using a
configuration, convention or class-based design paradigm and offering a command line or workbench interface. Here I sur-
vey and compare the design philosophies of several current pipeline frameworks. I provide practical recommendations
based on analysis requirements and the user base.
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Background

Bioinformatic analyses invariably involve shepherding files
through a series of transformations, called a pipeline or a work-
flow. Typically, these transformations are done by third-party
executable command line software written for Unix-compatible
operating systems. The advent of next-generation sequencing
(NGS), in which millions of short DNA sequences are used as
the source input for interpreting a range of biological phenom-
ena, has intensified the need for robust pipelines. NGS analyses
tend to involve steps such as sequence alignment and genomic
annotation that are both time-intensive and parameter-heavy.

A basic exome pipeline delivering called variants from raw
sequence could consist of as few as 12 steps, most of which can
be run in parallel, but a real analysis will typically involve sev-
eral additional downstream steps and complex report gener-
ation (Figure 1).

Although bioinformatics-specific pipelines such as bcbio-
nextgen (https://github.com/chapmanb/bcbio-nextgen) and
Omics Pipe [1] offer high-performance automated analysis, they
are not frameworks in the sense they are not easily extensible
to integrate new user-defined tools. A bioinformatics frame-
work should be able to accommodate production pipelines con-
sisting of both serial and parallel steps, complex dependencies,
varied software and data file types, fixed and user-defined par-
ameters and deliverables. Many modern pipeline frameworks

offer advanced features, such as displays for visualizing pro-
gress in real time, the ability to instantiate containerized tools
that can run anywhere, support for performing work on distrib-
uted clusters or in the cloud and graphical user interfaces that
allow workflows to be built by users without writing code. What
distinguishes frameworks from each other is not features but
design philosophy. To understand the origins of these frame-
works requires closer examination of their predecessors, i.e.
scripts and Makefiles.

Scripts

Scripts, written in Unix shell or other scripting languages such
as Perl, can be seen as the most basic form of pipeline frame-
work. Scripting allows variables and conditional logic to be used
to build flexible pipelines. However, in terms of ‘robustness’, as
defined by Sussman [2], scripts tend to be quite brittle. In par-
ticular, scripts lack two key features necessary for the efficient
processing of data: support for ‘dependencies’ and ‘reentrancy’.
Dependencies refer to upstream files (or tasks) that downstream
transformation steps require as input. When a dependency is
updated, associated downstream files should be updated as
well. Reentrancy is the ability of a program to continue where it
left off if interrupted, obviating the need to restart from the be-
ginning of a process. Pipelines often include steps that fail for
any number of reasons such as network or disk issues, file
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Figure 1. A DAG (Directed Acyclic Graph) depicting a trio analysis pipeline for detecting de novo mutations.
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corruption or bugs. A pipeline must be able to recover from the
nearest checkpoint rather than overwrite or ‘clobber’ otherwise
usable intermediate files. In addition, the introduction of new
upstream files, such as samples, in an analysis should not ne-
cessitate reprocessing existing samples.

Make

Despite its origin as a compiler build automation tool early in
computing history, the Make utility [3] is still successfully used
to manage file transformations common to scientific computing
pipelines. Make introduced the concept of ‘implicit wildcard
rules’, which define available file transformations based on file
suffixes (Figure 2).

A dependency tree is generated by Make from these rules.
When Make is asked to build a downstream file, or ‘target’, file
modification datetimes are used to determine whether any of
that target’s dependencies are newer than the target or its

intermediates. The dependency tree allows Make to infer the
steps required to make any target for which a rule chain exists.
Make is a ‘domain-specific language’ (DSL)—it provides a con-
vention-based syntax for describing inputs and outputs with
special symbols ($<, $@, $.) to represent shortcuts for accessing
filename stems, paths and suffixes of both the target and pre-
requisites (Figure 3).

Because it was never designed for scientific pipelines, Make
has several limitations that render it impractical for modern
bioinformatic analyses. Make has no built-in support for distrib-
uted computing, so dispatching tasks that can be run in parallel
on several nodes of a cluster is not easily done within the Make
framework. Make’s syntax is restricted to one wildcard per rule
and does not allow for lookup tables or other means of associat-
ing inputs to outputs other than exact filename stem matching.
Although Make allows a low level of shell scripting, more
sophisticated logic is difficult to implement.

Modern pipeline frameworks

In recent years, a number of new pipeline frameworks have
been developed to address Make’s limitations in syntax, moni-
toring and parallel processing as well as offer new features rele-
vant to bioinformatics and reproducible research, such as
visualization, version tracking and summary reports (Table 1).

Implicit convention frameworks

Implicit frameworks preserve the implicit wildcard idioms
introduced by Make while extending its capabilities, usually by
leveraging full-featured scripting languages such as Python to
implement logic both inside and outside of rules.

Figure 3. A Make rule for performing a sequence alignment using bwa mem [4].

Two paired fastq (.fq) files are used to produce a SAM alignment file. Symbols

are used to represent various pattern matching elements of filenames.

Figure 2. The basic Make rule syntax.

Table 1. A classification of modern pipeline frameworks

Syntax Paradigm Interaction Example Ease of 
Development

Ease of Use Performance 

Implicit Convention CLI Snakemake, 
Nextflow,
BigDataScript 

Explicit Convention CLI Ruffus, bpipe 

Explicit Configuration CLI Pegasus 

Explicit Class CLI Queue, Toil 

Implicit Class CLI Luigi 

Explicit Configuration Open Source 
Server 
Workbench 

Galaxy, Taverna 

Explicit Configuration Commercial 
Cloud 
Workbench 

DNAnexus, 
SevenBridges 

Explicit Configuration Open Source 

Cloud API 

Arvados, Agave 

Note. Ease of development refers to the effort required to compose workflows and also wrap new tools, such as custom or publicly available scripts and executables.

Ease of use refers to the effort required to use existing pipelines to process new data, such as samples, and also the ease of sharing pipelines in a collaborative fashion.

Performance refers to the efficiency of the framework in executing a pipeline, in terms of both parallelization and scalability. More stars connotes ‘easier’ or ‘faster’.
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Snakemake [5] builds on the implicit or wildcard-based logic
of Make while extending its capabilities by allowing Python to
be interspersed through the pipeline in conjunction with a DSL.
Some implicit frameworks, such as Nextflow (http://nextflow.
io), provide tools to abstract and manage filenaming into global
variables to reduce ambiguity. BigDataScript [6] is a stand-alone

DSL that offers its own language-independent syntax for imple-
menting pipeline logic (Figure 4).

Explicit frameworks

Implicit frameworks demand the user define rules or recipes for
performing file transformations separately from target(s).
Although this approach is logical from the standpoint of defin-
ing individual rules, users typically have a preconceived idea of
the order of operations. Implicit frameworks force users to think
more carefully about filenames rather than about the process.
In response, some frameworks such as Ruffus [7] and bpipe [8]
use an explicit paradigm, as used in scripts, in which the rule
topology is defined by the user, the order is fixed and tasks sim-
ply refer to each other rather than using a target naming
scheme (Figure 5).

Configuration frameworks

Many pipeline frameworks dispense with inline scripting code
and instead use a configuration-based, rather than convention-
based, means of describing tasks. Pegasus [9] is a National
Science Foundation (NSF)-funded workflow system originally
designed for the physical sciences. Like all configuration-based
frameworks, Pegasus is explicit—it does not implicitly infer how
to produce targets but instead requires a fixed XML file that de-
scribes individual job run instances and their dependencies
(Figure 6).

Class-based frameworks

Some high-performance workflow languages are implemented
in a class-based pure language manner. Although these may re-
semble DSL-based frameworks superficially, class-based imple-
mentations are often closely bound to an existing code library
rather than various executables. Class-based pipelines often
contain many thousands of lines of code implementing domain
logic. Genome Analysis Toolkit (GATK) [10] is a large Java library
for variant analysis, and Queue is a GATK-integrated Scala
framework that provides abstract classes for implementing
pipelines. Luigi (https://github.com/spotify/luigi) and Toil
(https://github.com/bd2kgenomics/toil) are pure-Python frame-
works that are not bound to any bioinformatics codebase, but
offer explicit Application Programming Interfaces (APIs) for
defining task dependencies from within task methods. Luigi
places particular emphasis on scheduled execution, monitoring,
visualization and the implicit dependency resolution of tasks.
Toil offers a strong focus on cloud execution.

Many existing implementations of bioinformatics software
tend to work with large ‘monolithic’ disk-based files, which im-
pedes the ability of work tasks to be efficiently farmed out to in-
dividual cores or nodes in a cluster, or to ephemeral machine
instances in the cloud. Efforts such as Big Data Genomics
(http://bdgenomics.org) aim to make common data formats
‘splittable’ for use with Hadoop and Spark-based scalable dis-
tributed computing frameworks. These efforts will likely also re-
quire the use of new or existing class-based pipelines for tasks
to be tightly coupled to individual data structures within the li-
brary, allowing a high level of granularity in terms of the con-
current processing of data.

Server workbenches

Unlike the command line-based pipeline frameworks reviewed
previously, workbenches allow end-users, typically scientists,

Figure 5. Tasks in Ruffus explicitly depend on other tasks, not file targets.

Figure 4. A Snakemake rule for performing a sequence alignment. This example uses a global configuration dictionary that allows parameters to be specified in JSON or

YAML-formatted configuration files or in the command line.
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to design analyses by linking preconfigured modular tools to-
gether, typically using a drag-and-drop graphical interface.
Because they require exacting specifications of inputs and
outputs, workbenches are intrinsically a subset of configur-
ation-based pipelines. The most popular bioinformatics server
workbenches are Galaxy [11] and Taverna [12]. Galaxy serves as
a Web-based interface for command line tools, whereas
Taverna offers stand-alone clients and allows pipelines to ac-
cess tools distributed across the Internet. Both allow users
to share workflows and are intended for local installations
(Figure 7).

For existing tools that have an existing component plug-in,
using Taverna is an easy solution for end-users. Creating a new
plug-in requires an in-depth knowledge of the XML-based API
and exact specifications of acceptable input filetypes, param-
eter values, resource management and exception behavior. The
onus is entirely on the developer to provide a means for new
tools to exist in the Taverna ecosystem. Adding a new execut-
able to Galaxy often requires only 20 lines of configuration code,
but Galaxy wrappers can be less robust than those in Taverna,
which requires slightly more familiarity with each tool on the
part of end-users to implement.

Figure 6. A Pegasus DAX (Directed Acyclic Graph in XML). A subsequent step to alignment has been included to show that a Pegasus task relies on explicit job IDs to

identify its antecedents rather than a filename pattern to identify its dependencies. Pegasus has no built-in system of variable injection, but includes APIs to produce

DAX files.

Figure 7. The Galaxy Workflow Editor allows users to link inputs, outputs and tools on a graphical canvas.
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Cloud workbenches and APIs

Cloud computing, defined here as the on-demand rent of vir-
tualized computing infrastructure from remote managed data
centers, offers an attractive scalable option for collaborative
multi-institutional research in terms of ‘bringing the tools to
the data’. Although subscription and compute costs are
decreasing, the speed of file transfer over the Internet to the
cloud remains an issue for these platforms. While all of the
aforementioned pipelines can be installed on cloud infrastruc-
ture [13], cloud workbenches offer a layer of abstraction that
simplifies the complex process of provisioning servers.

Commercial workbenches, such as DNAnexus (http://dna
nexus.com), SevenBridges (http://sbgenomics.com) and
Illumina’s BaseSpace (http://basespace.illumina.com), leverage
the scalability of cloud computing to offer high performance
while offering development and user experiences comparable
with local server-based open source workbenches. These pro-
viders also support APIs that allow users to launch automated
large batch analyses without using a Web interface.

Next-generation cloud-based open source workbenches,
such as Curoverse’s Arvados (https://curoverse.com) and the
iPlant Collaborative’s Agave [14], largely dispense with the Web
GUI as a primary design tool and instead are built from the
ground up as APIs designed to enable the migration of local ana-
lyses to the cloud for collaborative research.

Future trends

The need for a consistent means of distributing popular tools
among so many frameworks is driving an effort to standardize
workflow description languages. The Common Workflow
Language Specification (CWL; https://github.com/common-
workflow-language) describes a shared platform for developing
new tool descriptors, which has particular utility in supporting
cloud-enabled workbenches and plug-ins. Among the frame-
works reviewed here, Taverna, Galaxy, Toil, Arvados and
SevenBridges have already made significant progress toward
supporting the CWL. Another promising trend is the container-
ization of bioinformatic tools using Docker, lightweight virtual-
ization software, which will enable frameworks to easily
accommodate tools with complex software dependencies
(Figure 8).

Choosing a pipeline framework

Although there is no formal study of bioinformatics pipeline
users specifically, a previous survey (https://github.com/
michaelbarton/bioinformatics-career-survey) suggests the audi-
ence for bioinformatics development is evenly mixed between
those with biological and computer science backgrounds, and
large and small institutions. The choice of framework should be
informed both by the demands of developing the pipeline
and the requirements of those using it, even if the developers
and end-users are the same people. The use of pipeline frame-
works is intimately tied to reproducible computational research
[15], as ad hoc analyses are not likely to be implemented in a
pipeline. Reusable pipelines that can be run in the cloud are
often preferable in terms of reproducible research and the type
of collaborative ‘big science’ popular in modern sequencing
studies.

Choosing between an implicit or explicit syntax is largely a
question of personal preference. To developers unfamiliar with
Make rule syntax, arranging a series of implicit wildcard rules
and trusting the engine to infer a dependency tree can seem
unintuitive, but this idiomatic style offers a high level of con-
venience for integrating executable tools.

Convention-based frameworks tend to encourage a high level
of internal business logic. They also allow polished deliverables
(Web sites, PDF reports) to be easily generated from the underly-
ing data. At the same time, pipelines that ‘think on their feet’
would seem inherently less reproducible when compared with
configuration-based pipelines that demand a paper trail, but
often the latter simply forces developers to write dynamic tools
to generate static configurations. Because they are ‘set in stone’,
configuration-based pipelines often enable cluster schedulers to
consume an entire work plan in entirety instead of receiving
tasks in a piecemeal fashion, allowing the scheduler to better an-
ticipate load and allocate both memory and compute resources.

Workbenches and class-based frameworks can be considered
heavyweight. There are costs in terms of flexibility and ease of
development associated with making a pipeline accessible or
fast. Integrating new tools into workbenches clearly increases
their audience, but, ironically, the developers who are most cap-
able of developing plug-ins for workbenches are the least likely
to use them. Class-based frameworks offer a high level of per-
formance, but like workbenches, require highly skilled devel-
opers to build and maintain, and performance improvements are
not guaranteed to justify additional development time. The tran-
sition to high-performance computing (HPC) frameworks will
likely favor class-based pipeline frameworks in the future, al-
though this will severely limit the number of developers who will
be able to contribute to these pipelines, owing to their inherent
complexity of HPC development compared with DSLs. A recent
survey of institutions using bioinformatics pipelines [16] found
that virtually every participant anticipated further use of HPC-
enabled pipelines in the future and had struggled with issues of
reproducibility and data provenance. These issues require in-
tense attention to implementing highly customized solutions
that do not lend themselves to lightweight pipelines.

For those laboratories that neither serve a large number of
pure biologists who demand a workbench interface nor re-
quire the high level of performance that class-based pipelines
offer, a clear choice is not so obvious. One heuristic for choosing
a framework to consider is ‘return on investment’. Laboratories
that conduct large-scale, highly repetitive research requiring a
high degree of data provenance and versioning may benefit
from configuration-based pipelines. Laboratories doing

Figure 8. A snippet of the common workflow language describing the bwa mem

alignment program.
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exploratory proofs-of-concept would see little reason to use more
heavyweight frameworks—explicit DSL-based pipelines are
adequate.

Finally, most laboratories, especially those without access to
internal HPC resources, should consider cloud-based workbenches
and APIs. These offer many of the features of server-based frame-
works, with the added bonus of unlimited scalability and collab-
orative research opportunities, albeit incurring direct costs.

Although this review is not intended to be an exhaustive list
of pipeline frameworks, such lists do exist (e.g. https://github.
com/pditommaso/awesome-pipeline). For laboratories relying
solely on scripts, the choice of a framework, especially one to
accommodate new custom tools, may seem overwhelming and
irreversible, but all frameworks use the parameterization of in-
puts, outputs and tool descriptors. Once a script-based pipeline
is implemented in one framework, transitioning to a different
one is relatively simple should priorities change.

Key Points
• Key pipeline concepts of dependency and reentrancy

were introduced by Make.
• Pipelines are best distinguished not by features but by

design philosophy.
• Modern bioinformatic frameworks use a convention,

configuration or class-based design paradigm and use
an explicit or implicit syntax.

• Workbenches and class-based frameworks offer ease
of use and performance, respectively, but require add-
itional investment in time and expertise to integrate
new tools.

• Cloud-based platforms offer scalability and collabora-
tive research advantages.

• Developers choosing a pipeline framework should
consider the return on investment when considering
more heavyweight options.
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