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BACKGROUND: Through the food and water they ingest, the air they breathe, and the consumer products with which they interact at home and at
work, humans are exposed to tens of thousands of chemicals, many of which have not been evaluated to determine their potential toxicities.
Furthermore, while current chemical testing tends to focus on individual chemicals, the exposures that people actually experience involve mixtures of
chemicals. Unfortunately, the number of mixtures that can be formed from the thousands of environmental chemicals is enormous, and testing all of
them would be impossible.
OBJECTIVES:We seek to develop and demonstrate a method for identifying those mixtures that are most prevalent in humans.

METHODS:We applied frequent itemset mining, a technique traditionally used for market basket analysis, to biomonitoring data from the 2009–2010
cycle of the continuous National Health and Nutrition Examination Survey (NHANES) to identify combinations of chemicals that frequently co-occur
in people.
RESULTS:We identified 90 chemical combinations consisting of relatively few chemicals that occur in at least 30% of the U.S. population, as well as
three supercombinations consisting of relatively many chemicals that occur in a small but nonnegligible proportion of the U.S. population.
CONCLUSIONS:We demonstrated how FIM can be used in conjunction with biomonitoring data to narrow a large number of possible chemical combi-
nations down to a smaller set of prevalent chemical combinations. https://doi.org/10.1289/EHP1265

Introduction
The ubiquitous use of man-made chemicals in consumer products
(Weschler 2009) and industrial processes (U.S. EPA 2014) leads
to the potential for human exposure to large numbers of these
substances starting from the earliest stages of life (Carpenter
et al. 1998). In fact, the U.S. Environmental Protection Agency
(EPA)’s Toxic Substances Control Act (TSCA) inventory now
contains more than 84,000 chemical substances that may be in
commercial use (Institute of Medicine 2014; U.S. Government
Accountability Office 2013), and an estimated 30,000 of these
substances are produced at rates greater than one metric ton per
year (European Commission 2007). All humans, not just those
inhabiting areas near major pollution centers, are now exposed to
thousands of chemicals through the air they breathe, the water
they drink, the food they eat, and the products they buy and use
(Thornton et al. 2002). Furthermore, only a small fraction of the
chemicals known to be present in our environment have been suf-
ficiently characterized in terms of their potential to cause human
or ecological toxicity to support regulatory action (Judson et al.
2009; National Research Council 1984). Exacerbating this prob-
lem of too many chemicals and insufficient data is the fact that
people in the real world are not exposed to individual chemicals
one at a time, but rather to mixtures of chemicals. The majority

of toxicity assessments focus on single chemicals, but unfortu-
nately, the effects of mixtures cannot always be determined using
simple additive assumptions (Berenbaum 1989). Thus, the
National Research Council has suggested the need to shift away
from single chemical assessments in favor of mixtures testing
(National Research Council 1994), and in response to this, the
EPA has recommended that risk assessments be conducted using
toxicity data on actual mixtures of concern or reasonably similar
mixtures (U.S. EPA 2000).

At first glance, selecting mixtures to test seems an over-
whelming prospect because of the sheer numbers. When consid-
ering a candidate pool of n chemicals, there are 2n − 1 possible
combinations. Thus, for a universe of 20 chemicals, the number
of possible combinations is over one million, and the number of
combinations doubles with each chemical we add to the candi-
date pool. Fortunately, coexposure to environmental chemicals is
not purely random, but is subject to various structuring processes
(Tornero-Velez et al. 2012), so we expect that the number of
combinations of n chemicals that occur frequently in humans is
likely much less than 2n − 1. To focus our assessment efforts, we
therefore need to develop tools that can identify prevalent chemi-
cal mixtures.

We suggest that the large number of mixtures that might be
considered for toxicity testing be narrowed down to a relatively
small number of mixtures of concern using a two-step process:
first, identify combinations of chemicals that are most prevalent,
and then identify the relative amounts (or concentrations) of the
constituent chemicals to arrive at well-defined mixtures. Note
that we make a distinction between chemical combinations and
chemical mixtures. In particular, we define a combination to be a
collection of chemicals that co-occur in an individual, whereas
we define a mixture to be a collection of chemicals that co-occur
in an individual in specific proportions as determined by their
concentrations in blood or urine. In this manuscript, we focus on
the first step in this process, identifying prevalent combinations
of chemicals.

Our approach for identifying combinations of chemicals that
are prevalent in humans relies on biomonitoring data, such as
those collected in the National Health and Nutrition Examination
Survey (NHANES). The National Center for Health Statistics
(NCHS) of the Centers for Disease Control and Prevention con-
ducts this ongoing survey of health metrics on a 2-y cycle, and
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part of each survey cycle involves the investigation of approxi-
mately 100 markers of chemical exposure in a representative
sample of the U.S. population (CDC 2016a). Since the beginning
of the continuous NHANES program in 1999 (CDC 2016b), 265
chemicals in total have been included in NHANES biomonitoring
studies (Sobus et al. 2015). While these few hundred chemicals
only account for a very small fraction of the aforementioned tens
of thousands of chemicals to which we may be exposed,
NHANES currently provides the most comprehensive source of
internal human exposure data. Therefore, we chose to use
NHANES biomonitoring data to explore methods for finding
prevalent combinations of chemicals.

We propose that a market basket analysis technique known as
frequent itemset mining (FIM) (Borgelt 2012) can be used to nar-
row down the large number of possible combinations that can be
formed from a given pool of chemicals (such as the NHANES
chemicals) by identifying those combinations that are most prev-
alent. While FIM has traditionally been applied to data sets
describing consumer purchasing behavior (Agrawal and Srikant
1994), it has been used in a variety of other contexts (Borgelt
2012). Recently, (Bell and Edwards 2014; 2015) applied FIM to
NHANES data sets, but in their case, they sought to find associa-
tions between chemicals and diseases through association rules
mining. So, although the number of peer-reviewed publications
utilizing NHANES biomarker data has increased steadily over
the last 10 y (Sobus et al. 2015), to our knowledge, these data
have not been used to isolate chemical combinations based upon
their prevalence. Here, we demonstrate how FIM can be applied
to NHANES biomarker data to identify combinations of chemi-
cals that are present in a significant proportion of the U.S.
population.

Methods
All data processing and analyses described herein were per-
formed using Python 3.5 (version 3.5; Python Software
Foundation) on a Dell Precision T7610 workstation running Red
Hat Linux (version 6.8; Red Hat Enterprise). Scripts and relevant
data files are available in the Supplemental Materials (as the com-
pressed file EHP_Scripts_revised.zip).

Data Sets
We downloaded the NHANES 2009–2010 laboratory data (CDC
2016c), and from this, we used reported concentrations of envi-
ronmental chemicals and their metabolites as measured in the
urine and serum of subjects selected from the U.S. population.
The 2009–2010 data set was selected because it was the most cur-
rent complete data set available. We describe below the relevant
features of this data set. Note that NHANES protocols were
approved by the NCHS Research Ethics Review Board, and all
NHANES participants provided informed consent before taking
part in the survey.

Subsamples and chemical groups. The NHANES 2009–2010
data set includes a sample of 10,537 total subjects; however, not
all chemicals were measured in all subjects. NHANES divided
the subjects into three disjoint subsamples, A, B, and C, each
consisting of approximately one-third of the total sample and
each designed to be a representative sample of the U.S. popula-
tion (CDC 2016d). Individuals in Subsample A were tested for
Group A chemicals, but not for Group B or Group C chemi-
cals; similarly, Subsample B and Subsample C individuals were
tested for chemicals from Group B or Group C, respectively,
but not for chemicals from other groups (note that the terms
Group A, Group B, and Group C do not appear in NHANES
documentation; we use them here to simplify references to

those chemicals analyzed in NHANES Subsamples A, B, and
C, respectively.) Because of this block structuring, information
about the co-occurrence of chemicals from different groups is
not directly available from the NHANES data sets.

Each of the chemical groups in NHANES 2009–2010
included four subgroups of chemicals, and depending on the
types of chemicals in a given subgroup, laboratory analyses were
conducted using either urine or blood spot (i.e., one-time) sam-
ples. Group A included (A1) metals; (A2) arsenics; (A3) perchlo-
rate, nitrate, and thiocyanate; and (A4) phytoestrogens, all of
which were measured in spot urine samples. Group B included
(B1) environmental phenols; (B2) environmental pesticides;
(B3) phthalates; and (B4) polyaromatic hydrocarbons (PAHs),
which were also all measured in urine. Finally, Group C
included (C1) pyrethroids, herbicides, and organophosphate
metabolites; (C2) polyfluoroalkyl chemicals; (C3) caffeine and
metabolites; and (C4) diethyltoluamide (DEET) and metabo-
lites. Most Group C chemicals were measured in urine, except
for the 12 polyfluoroalkyl chemicals (Subgroup C2), which
were measured in serum. We provide complete lists of the
chemicals included in Groups A, B, and C in Tables 1, 2, and
3, respectively. More detailed information on these chemicals is
presented in Tables S1, S2, and S3.

Age restrictions and excluded data. NHANES 2009–2010
included subjects of all ages, but only subjects aged 6 and older
were required to provide urine for laboratory analyses, and
only subjects age 12 y and older were required to provide
blood for analysis of polyfluoroalkyl chemicals (Subgroup
C2). Analyses of some chemicals (e.g., cotinine in blood,
and the metals mercury, lead, and cadmium in blood) were
performed in subjects from all groups (also with age restric-
tions), but these chemicals were excluded from consideration
to avoid issues related to the selection of appropriate subject
weights (see “Sampling design and weights” below). Within
subsamples, we also excluded individuals for which data on
some chemicals was omitted. Thus, for our analysis, we only
considered those subjects in each subsample for which blood or
urine concentrations for all chemicals within the appropriate
group were included.

Creatinine correction and fill values. Because urine dilution
can vary significantly due to fluid intake and other intra- and
interindividual factors, NCHS recommends performing a creati-
nine correction when analyzing concentrations of chemicals in
urine (CDC 2016e). Specifically, this entails computing the ratio
of urinary chemical concentration to urinary creatinine concentra-
tion. We performed the NCHS recommended correction and used
the resulting creatinine-adjusted chemical concentration for all
chemicals measured in urine.

Each chemical analyzed in NHANES has a limit of detec-
tion (LOD) based on the laboratory method used for analysis
(CDC 2016f). NHANES reports which measurements fall below
this empirically derived LOD, and in the NHANES 2009–2010
data files, concentrations below the LOD are converted to fill
values (typically, the LOD divided by the square root of two).
When performing the creatinine correction, we set the creatinine-
adjusted concentration to zero whenever the raw concentra-
tion was below the LOD. In this way, our creatinine correc-
tion preserves the homogeneity of all measurements below
the LOD.

Note that we do not perform a creatinine correction for
concentrations measured in serum. Thus, we work with raw
serum concentrations and creatinine-adjusted urine concentra-
tions in our analyses. For the sake of brevity, it is convenient
to refer to both of these types of data as concentrations, and
so hereafter, we use the term “concentration” in place of
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"creatinine-adjusted concentration" when describing an adjusted
urine concentration.

Sampling design and weights. NHANES employs a complex,
multistage probability sampling design to select human subjects
representative of the noninstitutionalized, civilian U.S. population
(CDC 2016g). In using this approach, NHANES oversamples var-
ious subpopulations, allowing data analysts to achieve increased
reliability and precision in estimates of health and nutrition indica-
tors for these groups. Because the NHANES 2009–2010 data set
was not constructed from a simple random sample of the U.S.
population, NHANES assigned a different weight to each subject,
that is, one may think of each subject as representing a fixed num-
ber of demographically similar U.S. residents, but this fixed num-
ber, or weight, is, in general, different for each subject.

Each subject included in NHANES 2009–2010 belongs not
only to the total 2009–2010 sample, but also to one of the sub-
samples (A, B, or C). Therefore, NHANES assigns each subject
two distinct weights: one to be used when analyzing the entire
sample, and another when analyzing a subsample (CDC 2016g).
Since we focus here on analyzing subsamples of individuals that
have all been tested for the same group of chemicals, we utilize
the NHANES subsample weights.

Table 4 provides summary information on each of the
NHANES 2009–2010 subsamples. The subsample weight for a
given NHANES subject can be interpreted as the number of U.S.
residents represented by that subject, so the sum of the weights
gives the size of the total population represented (CDC 2016h).
Note that Table 4 implies that the population sizes represented by
Subsamples A, B, and C differ. This is because NHANES omits
some subjects from the biomarker analyses conducted for each of
the subsamples, including those deemed too young to be included
in certain laboratory tests, and because we further omit those sub-
jects for which some relevant chemical concentrations were not
available.

Procedure
We applied FIM to the NHANES 2009–2010 data set to identify
the most prevalent combinations of chemicals present in U.S. res-
idents. As described below, we first preprocessed the raw
NHANES data to obtain information amenable to FIM. Then we
identified prevalent combinations and supercombinations of
NHANES chemicals.

Frequent itemset mining. FIM is a popular data mining tech-
nique originally developed for market basket analysis (Borgelt
2012). Since this method was designed for analysis of consumer
purchasing behavior, the FIM terminology established in the lit-
erature tends to focus on the following: items, which are typically
goods or services that can be purchased; itemsets, which are col-
lections of these items; and transactions, which are lists of items
purchased, e.g., by a particular person at a particular place and
time. This same technique can be applied, however, to any data
set that can be organized as a list of transactions. For our pur-
poses, we considered each NHANES subject to be a transaction
and each chemical analyte to be an item. Thus, any combination
of the chemicals analyzed constitutes an itemset, and prevalent
combinations correspond to frequent itemsets.

We now define the chemical-centric FIM nomenclature used
hereafter in this manuscript (which is distinct from the FIM ter-
minology used elsewhere). To begin, we let B= i1, . . . , imf g be a
set of m chemicals. We call this set the chemical base (which is
analogous to an item base in traditional FIM terminology). For
our purposes, this was the set of all chemicals in a given group
(either A, B, or C). Now, call any subset I of B a combination of
chemicals. Next, let T = t1, . . . , tn½ � be a list of n chemical combi-
nations corresponding to n NHANES subjects. In general, we call
a list like T a subject-chemical database (analogous to a transac-
tion database). Note that tk is a subset of B, and k 2 1, . . . , nf g is
an index that identifies the specific NHANES subject in which
the combination of chemicals tk occurs. That is, each record in T
consists of a list of the chemicals that are deemed to be present in
a given subject. More will be said about determining the presence
(or absence) of a chemical in an individual subject in the next
subsection of this manuscript.

Next, we define the concept of support. First, note that a
chemical combination I is said to occur in subject k if and only if
the set I is contained in the set tk. So, the absolute support of I
with respect to T, denoted sTðIÞ, is the number of occurrences of
combination I in the database T; that is, sTðIÞ denotes the number
of subjects for which all the chemicals in I are present.
Furthermore, the relative support of I with respect to T, denoted
rTðIÞ, is the proportion of subjects in T for which all the chemi-
cals in I are present. Note that we use the term prevalence level
as a synonym for relative support throughout this manuscript.

The following series of examples serves to illustrate the ter-
minology established in the preceding paragraphs:

• B= a,b,c,d,ef g is a chemical base. For our purposes, a, b, c,
d, and e could represent five chemicals analyzed in a hypo-
thetical NHANES subsample.

• I = a,bf g is an example of a combination. This could be a set
of chemicals that occur together.

• T = t1, t2, t3, t4½ �= a,b,cf g, a,b,df g, c,ef g, af g� �
is a subject-

chemical database. This list could represent four subjects in
the hypothetical NHANES subsample already referenced.
In that case, each set in the list consists of the chemicals
that are present in the corresponding subject. In particular,
chemicals a, b, and c are present in Subject 1; chemicals a,
b, and d are present in Subject 2; and so on. As shown
below, this subject-chemical database can also be repre-
sented as a presence–absence matrix in which the rows and
columns correspond to subjects and chemicals, respectively.

Table 1. National Health and Nutrition Examination Survey (NHANES)
2009–2010 Group A chemicals.

NHANES code Chemical name NHANES file Subgroup

URXUSB Antimony UHM_F A1
URXUBA Barium UHM_F A1
URXUBE Beryllium UHM_F A1
URXUCD Cadmium UHM_F A1
URXUCS Cesium UHM_F A1
URXUCO Cobalt UHM_F A1
URXUPB Lead UHM_F A1
URXUMO Molybdenum UHM_F A1
URXUPT Platinum UHM_F A1
URXUTL Thallium UHM_F A1
URXUTU Tungsten UHM_F A1
URXUUR Uranium UHM_F A1
URXUAS Arsenic UAS_F A2
URXUAS5 Arsenic (V) acid UAS_F A2
URXUAB Arsenobetaine UAS_F A2
URXUAC Arsenocholine UAS_F A2
URXUAS3 Arsenous (III) acid UAS_F A2
URXUDMA Dimethylarsinic acid UAS_F A2
URXUMMA Monomethylarsonic acid UAS_F A2
URXUTM Trimethylarsine oxide UAS_F A2
URXNO3 Nitrate PERNT_F A3
URXUP8 Perchlorate PERNT_F A3
URXSCN Thiocyanate PERNT_F A3
URXDAZ Daidzein PHYTO_F A4
URXETD Enterodiol PHYTO_F A4
URXETL Enterolactone PHYTO_F A4
URXEQU Equol PHYTO_F A4
URXGNS Genistein PHYTO_F A4
URXDMA O-Desmethylangolensin PHYTO_F A4

Note: Subjects in Subsample A that met certain age and other requirements were tested for
these chemicals (chemical groups and subgroups are described in the “Methods” section).
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• The combination a,bf g occurs in Subject 1. We know this
because a,bf g is contained in t1 = a,b,cf g. Equivalently, we
might state “Chemicals a and b are present in Subject 1.”

• The absolute support of a,bf g is 2. Equivalent: “Chemicals a
and b co-occur in exactly 2 subjects.”

• The prevalence level of a,bf g is 2=4= 0:5. Equivalent:
“Chemicals a and b co-occur in exactly 50% of the
subjects.”
Using the concept of support, or prevalence level, we can

now describe precisely what we mean by a prevalent chemical
combination. Given a chemical base B= i1, . . . , imf g, a subject-
chemical database T = t1, . . . , tnf g, and a minimum prevalence
level rmin 2 0, 1½ �, the set of prevalent combinations (analogous
to frequent itemsets) is

F T rminð Þ= I � B jrT Ið Þ≥rmin
� �

:

In other words, the prevalent combinations are those that
occur in at least the proportion rmin of the subjects represented in
T. The following example assumes the same item base B and
transaction database T described in the examples above:

• F T 0:5ð Þ= af g, bf g, cf g, a,bf g� �
. That is, for minimum prev-

alence level 0.5, the prevalent chemical combinations are
af g, bf g, cf g, and a,bf g.

FIM, therefore, is any process or algorithm used to identify
frequent itemsets, or in our case, prevalent chemical combina-
tions. A number of FIM algorithms exist (Agrawal and Srikant
1994; Zaki et al. 1997), but we used the Frequent Pattern Growth
(FP-Growth) algorithm (Han et al. 2000) as implemented in the
PyFIM module (Borgelt 2016) for Python. Different FIM algo-
rithms may be more efficient in processing different types of data
sets, but all will yield the same results because FIM is a determin-
istic process. We chose to use FP-Growth because it is designed
to efficiently identify maximal frequent itemsets (see “The
Apriori property and maximal prevalent combinations” below).
For our purposes, frequent itemset mining of NHANES data sets
provides a means for identifying combinations of chemicals that
co-occur in (at least) some specified proportion of the U.S.
population.

Converting NHANES data sets into subject-chemical data-
bases. To apply FIM to the NHANES 2009–2010 data set, we
first converted the data set into a subject-chemical database. This
required two essential steps: converting information on chemical
concentrations into presence–absence information, and account-
ing for differently weighted subjects.

NHANES biomonitoring data consist of concentration infor-
mation, whereas FIM as previously described operates on a
subject-chemical database describing presence or absence of
chemicals in various subjects. It is worth noting that here absence

Table 2. National Health and Nutrition Examination Survey (NHANES) 2009–2010 Group B chemicals.

NHANES code Chemical name NHANES file Subgroup

URXBP3 Benzophenone-3 EPH_F B1
URXBPH Bisphenol A EPH_F B1
URX4TO 4-tert-Octylphenol EPH_F B1
URXTRS Triclosan EPH_F B1
URXBUP Butyl paraben EPH_F B1
URXEPB Ethyl paraben EPH_F B1
URXMPB Methyl paraben EPH_F B1
URXPPB n-Propyl paraben EPH_F B1
URXOPP ortho-Phenylphenol PP_F B2
URX1TB 2,4,5-Trichlorophenol PP_F B2
URX3TB 2,4,6-Trichlorophenol PP_F B2
URXDCB 2,4-Dichlorophenol PP_F B2
URX14D 2,5-Dichlorophenol PP_F B2
URXMZP Monobenzyl phthalate PHTHTE_F B3
URXMIB Monoisobutyl phthalate PHTHTE_F B3
URXMBP Mono-n-butyl phthalate PHTHTE_F B3
URXMCP Monocyclohexyl phthalate PHTHTE_F B3
URXMEP Mono-ethyl phthalate PHTHTE_F B3
URXMHP Mono(2-ethylhexyl) phthalate PHTHTE_F B3
URXMHH Mono(2-ethyl-5-hydroxyhexyl) phthalate PHTHTE_F B3
URXMOH Mono(2-ethyl-5-oxohexyl) phthalate PHTHTE_F B3
URXECP Mono(2-ethyl-5-carboxypentyl) phthalate PHTHTE_F B3
URXCNP Monocarboxynonyl phthalate PHTHTE_F B3
URXMNP Monoisononyl phthalate PHTHTE_F B3
URXCOP Monocarboxyoctyl phthalate PHTHTE_F B3
URXMNM Mono-methyl phthalate PHTHTE_F B3
URXMC1 Mono(3-carboxypropyl) phthalate PHTHTE_F B3
URXMOP Mono-n-octyl phthalate PHTHTE_F B3
URXP04 2-Hydroxyfluorene PAH_F B4
URXP03 3-Hydroxyfluorene PAH_F B4
URXP17 9-Hydroxyfluorene PAH_F B4
URXP06 1-Hydroxyphenanthrene PAH_F B4
URXP07 2-Hydroxyphenanthrene PAH_F B4
URXP05 3-Hydroxyphenanthrene PAH_F B4
URXP10 1-Hydroxypyrene PAH_F B4
URXP01 1-Hydroxynapthalene PAH_F B4
URXP02 2-Hydroxynapthalene PAH_F B4

Note: Subjects in Subsample B that met certain age and other requirements were tested for these chemicals (chemical groups and subgroups are described in the “Methods” section).

a b c d e

1 1 1 1 0 0
2 1 1 0 1 0
3 0 0 1 0 1
4 1 0 0 0 0
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technically means probably present, but at a level below some
prescribed threshold. Therefore, NHANES data must be discre-
tized before applying an FIM algorithm. Figure 1 illustrates con-
ceptually the conversion of a concentration matrix into a
discretized presence–absence matrix. The presence–absence ma-
trix is simply an array representation of the aforementioned
subject-chemical database. In the discussion that follows, note
that rows represent subjects and columns represent chemicals in

both the concentration matrix and the presence–absence matrix.
We used two essential approaches for performing the discretiza-
tion, and each of these operates one column (or chemical) at a
time. In the first, we used the LOD for each chemical as a
threshold, setting values below the LOD for a given chemical to
0 (indicating absence) and setting all other values to 1 (indicat-
ing presence). In the second approach, we used a percentile
threshold for each chemical. In this case, we utilized subsample
weights to find the observed value corresponding to a given per-
centile concentration measurement. That is, for each chemical,
we duplicated each concentration according to the weight of the
corresponding subject and then computed a percentile in the
usual way from the resulting list of concentration values. Each
observed measurement over this value was translated to 1, and
the remaining values were each set to 0. Because we considered
the three NHANES 2009–2010 subsamples (A, B, and C) sepa-
rately, note that we converted three concentration matrices into
presence–absence matrices for any particular threshold or discre-
tization method applied.

As just described, applying the discretization step of the data
conversion process results in a presence–absence matrix with the
same dimensions as the concentration matrix. While FIM could
be applied to this presence–absence matrix as is, the results
would likely be biased because, in general, each row in the matrix
represents a differently weighted subject. To state this another
way, each row in the matrix represents a certain proportion of the

Table 3. National Health and Nutrition Examination Survey (NHANES) 2009–2010 Group C chemicals.

NHANES code Chemical name NHANES file Subgroup

URX24D 2,4-Dichlorophenoxyacetic acid UPHOPM_F C1
URX25T 2,4,5-Trichlorophenoxyacetic acid UPHOPM_F C1
URXMAL Malathion dicarboxylic acid UPHOPM_F C1
URXOXY 2-Isopropyl-4-methyl-6-hydroxypyrimidine UPHOPM_F C1
URXPAR para-Nitrophenol UPHOPM_F C1
URXCPM 3,5,6-Trichloro-2-pyridinol UPHOPM_F C1
URXTCC trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid UPHOPM_F C1
URXCB3 cis-3-(2,2-Dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid UPHOPM_F C1
URX4FP 4-Fluoro-3-phenoxybenzoic acid UPHOPM_F C1
URXOPM 3-Phenoxybenzoic acid UPHOPM_F C1
LBXPFBS Perfluorobutane sulfonic acid PFC_F C2
LBXPFDE Perfluorodecanoic acid PFC_F C2
LBXPFDO Perfluorododecanoic acid PFC_F C2
LBXPFHP Perfluoroheptanoic acid PFC_F C2
LBXPFHS Perfluorohexane sulfonic acid PFC_F C2
LBXPFNA Perfluorononanoic acid PFC_F C2
LBXPFOA Perfluorooctanoic acid PFC_F C2
LBXPFOS Perfluorooctane sulfonic acid PFC_F C2
LBXPFSA Perfluorooctane sulfonamide PFC_F C2
LBXEPAH 2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid PFC_F C2
LBXMPAH 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid PFC_F C2
LBXPFUA Perfluoroundecanoic acid PFC_F C2
URXMU1 1-Methyluric acid CAFE_F C3
URXMU2 3-Methyluric acid CAFE_F C3
URXMU3 7-Methyluric acid CAFE_F C3
URXMU4 1,3-Dimethyluric acid CAFE_F C3
URXMU5 1,7-Dimethyluric acid CAFE_F C3
URXMU6 3,7-Dimethyluric acid CAFE_F C3
URXMU7 1,3,7-Trimethyluric acid CAFE_F C3
URXMX1 1-Methylxanthine CAFE_F C3
URXMX2 3-Methylxanthine CAFE_F C3
URXMX3 7-Methylxanthine CAFE_F C3
URXMX4 1,3-Dimethylxanthine CAFE_F C3
URXMX5 1,7-Dimethylxanthine CAFE_F C3
URXMX6 3,7-Dimethylxanthine CAFE_F C3
URXMX7 1,3,7-Trimethylxanthine CAFE_F C3
URXAMU AAMU CAFE_F C3
URXDEE N,N-diethyl-meta-toluamide DEET_F C4
URXDEA 3-diethyl-carbamoyl benzoic acid DEET_F C4
URXDHD N,N-diethyl-3-hydroxymethylbenzamide DEET_F C4

Note: Subjects in Subsample C that met certain age and other requirements were tested for these chemicals (chemical groups and subgroups are described in the “Methods” section).

Table 4. Summary information for each of the National Health and Nutrition
Examination Survey (NHANES) 2009–2010 subsamples.

Category Subsample A Subsample B Subsample C

Number of subjects 2,741 2,736 2,132
Number of chemicals 29 37 40
Maximum weight 476,883.0 426,061.1 413,068.1
Minimum weight 14,002.7 13,975.1 12,659.3
Sum of weights 258,281,689.4 272,911,664.0 226,021,580.6
Records needed 18,445.1 19,528.5 17,854.1

Note: The number of subjects and the summary statistics for the subsample weights only
reflect those subjects that met the criteria described in “Methods” section. That is, some
NHANES 2009–2010 subjects were omitted from consideration because they did not
meet age requirements for certain laboratory analyses or because chemical concentration
information was incomplete. As discussed in the text, we preprocessed the raw data to
obtain subject-chemical databases before conducting frequent itemset mining (FIM). Part
of this process entailed duplicating subject records to reflect subsample weights. The final
row in this table gives the total number of records needed (after duplication) so that each
record corresponding to a subject with the minimum weight would occur exactly once in
the transaction database.
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U.S. population, and the proportion represented varies from row
to row. To overcome this issue, we duplicated rows in each pres-
ence–absence matrix to create a new presence–absence matrix
with an identical number of columns, but a larger number of rows.
Using the summary statistics on subsample weights reported in
Table 4, we determined the number of rows, or records, that
should be created in this new matrix as duplicates of the i th row,
or subject, in the original presence–absence matrix as

R
wiP
kwk

×N
� �

,

where wi denotes the weight of the i th subject represented in the
original presence–absence matrix,

P
kwk denotes the sum of the

weights of all subjects, N denotes the desired total number of
records in the final presence–absence matrix, and R denotes the
function that rounds a real number to the nearest integer. To
determine a suitable value for N, we computed the number of
records that would ensure a subject with the minimum weight
would be represented exactly once (before rounding) in the new
matrix; that is, we computed the sum of weights divided by the
minimum subject weight. Note that this number of records
needed is provided as the last row of Table 4. For each subsam-
ple, this value is close to, but does not exceed, 20,000, so we
used N =20,000 to create our presence–absence matrices. These
presence–absence matrices were then used as the subject-
chemical databases for FIM analysis. We reiterate that because a
single NHANES subject can appear one or more times as a record
in presence–absence matrices created as just described, many of
the subjects, or records, in the subject-chemical databases we
constructed for FIM are actually duplicates.

The Apriori property and maximal prevalent combinations.
One fairly obvious property of FIM support is that it decreases
monotonically. In other words, if a chemical combination is
extended (by adding one or more chemicals to it), its support will
not increase. If we supply a minimum prevalence level rmin, the
Apriori property (Agrawal and Srikant 1994) follows immedi-
ately from this: a superset of a nonprevalent chemical combina-
tion cannot be prevalent. This property forms the basis for many
of the aforementioned FIM algorithms [including the FP-Growth
algorithm (Han et al. 2000)].

The contrapositive of the Apriori property (in the context of
chemical-subject data) is that all subsets of a prevalent combina-
tion are also prevalent. This useful property leads us to the con-
cept of a maximal prevalent combination (Bayardo 1998) (a
maximal prevalent combination corresponds to a maximal fre-
quent itemset in the FIM literature). A prevalent combination I 2

F T rminð Þ is maximal if and only if all supersets of I are nonpre-
valent. Using the Apriori property contraposition, the set of all
prevalent combinations can easily be recovered from the set
MTðrminÞ of maximal prevalent combinations (Borgelt 2012). In
order to reduce the total number of chemical combinations we
ultimately needed to manually examine, we focused on maximal
prevalent combinations for our analysis. The FIM method of the
PyFIM module (Borgelt 2016) can be set to return either all prev-
alent combinations or just the maximal prevalent combinations.
Thus, we used this method to generate maximal prevalent combi-
nations as needed.

Identification of supercombinations.When we set discretiza-
tion thresholds and minimum prevalence levels to relatively high
values, the prevalent combinations (and maximal prevalent com-
binations) that emerged consisted of relatively few chemicals.
We were also interested, however, in finding combinations that
might have low prevalence, but which do nevertheless occur in
U.S. residents and which consist of relatively many chemicals.
We call such combinations of many chemicals that have low but
nonzero prevalence levels supercombinations.

In order to find supercombinations of chemicals in each
group, we applied FIM to subject-chemical databases in which
subjects were not duplicated as described previously described.
In particular, we searched for combinations that occurred in at
least two NHANES subjects, but which also met some minimum
size requirement (e.g., containing at least 20 chemicals). In this
approach, we did not utilize subject weights in order to duplicate
subjects in the transaction databases. Instead, we utilized the sub-
ject weights after applying FIM in order to determine prevalence
levels of the supercombinations. The FIM method of the PyFIM
module (Borgelt 2016) allows the user to specify absolute sup-
port and minimum combination size as parameters. Therefore,
we used these parameters to specify an absolute support of two
subjects and a relatively large minimum combination size (e.g.,
25 in the case of Group A chemicals). This allowed us to find
supercombinations efficiently without taxing computer memory
resources.

Investigation of reproducibility of prevalent combinations
and demographic considerations. After identifying maximal
prevalent combinations within each group of chemicals as
described above, we investigated the robustness of the observed
prevalence levels of these combinations by examining partitions
of the NHANES subsamples. In particular, we randomly assigned
each subject in a given subsample (e.g., Subsample A) to one
of four partitions of approximately equal size. Utilizing the
NHANES subsample weights of the subjects, we then calcu-
lated the observed prevalence of a given combination in the

Figure 1. Discretization of data for a hypothetical National Health and Nutrition Examination Survey (NHANES) subsample consisting of five subjects (S1–
S5) that were each tested for six chemicals (C1–C6). The concentration data consist of real numbers representing concentrations, whereas the presence–absence
data consist of binary digits, with 1 indicating presence and 0 indicating absence. For each chemical concentration, the appropriate discretization threshold was
used to determine presence or absence. For example, the concentration in the top left cell of the concentration data matrix (0.63) was converted to a 1 in the
presence–absence data matrix because 0.63 exceeds the chemical-specific threshold of 0.4.
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represented subpopulation as S1
S2
, where S1 denotes the sum of

the weights of all subjects in the partition for which all chemi-
cals in the combination were present (at a concentration above
the threshold), and S2 denotes the sum of the weights of all sub-
jects in the partition.

To investigate the effects of demographics on the prevalence
of identified combinations, we also assigned each subject in a
given NHANES subsample to one or more classes using demo-
graphic information recorded by NHANES. In particular, we
examined prevalence of combinations in the following demo-
graphic classes: male, female, persons age 6–11 y, persons age
12–19 y, persons age 20–65 y, persons age 66 or more years, and
persons who self-identified “as having used nicotine and/or
tobacco in the 5 d prior to completing the NHANES question-
naire” (CDC 2016b). As with the partitions, the observed preva-
lence in the represented subpopulation was calculated as S1=S2,
but in this case, S1 denotes the sum of the weights of all subjects
in the demographic class (within the given subsample) for which
all chemicals in the combination were present (at a concentration
above the threshold), and S2 denotes the sum of the weights of all
subjects in the demographic class (within the given subsample).

Using the aforementioned partitions of the NHANES subsam-
ples, we investigated the degree to which prevalent combinations
are reproducible given variations in sampling. To do this, we
reapplied FIM to NHANES biomonitoring data essentially as
described above, but with several important modifications to
our method. First, after constructing the presence–absence ma-
trix for a given NHANES subsample (in which rows represent
subjects and columns represent chemicals), we created a new
presence–absence matrix by selecting only those rows of the
complete matrix that corresponded to the subjects within the parti-
tion of interest. We then used this smaller presence–absence
matrix to construct a subject-chemical database by duplicating
rows based on subject weights (as described previously).
Finally, we selected a minimum prevalence level and applied
FIM to the subject-chemical database, but this time we set the
fim method of the PyFIM module (Borgelt 2016) to return all
prevalent combinations rather than just the maximal prevalent
combinations.

As a measure of the degree of concordance in the prevalent
combinations thus identified for two partitions, we computed a
concordance percentage. That is, for two partitions i and j of a
given subsample, we denoted the sets of prevalent combinations

found in these partitions ci and cj, respectively, and computed the
concordance percentage as Pij =100 � ci \ cjj= cijj�� , where ci \ cjj

��
represents the number of combinations in both sets (i.e., in their
intersection) and cijj represents number of combinations in set ci.
We then computed the average concordance percentage as

P=
1
12

X4
i=1

X4
j=1
j 6¼ i

Pij:

Importantly, we did not include the components of the form
Pii, which are necessarily all equal to 100% in this average.

Results
Using FIM, we identified 90 maximal prevalent combinations and
3 supercombinations made up of chemicals analyzed in NHANES
2009–2010. Because of the block structure of the NHANES data,
we focused exclusively on combinations made up of chemicals
within the same group. We also analyzed the numbers of single
chemicals from each group that tend to be present in individuals.

Numbers of Chemicals Present in Individuals
Figure 2 illustrates how the numbers of chemicals present in indi-
viduals change as we modify the discretization thresholds used to
determine presence. In particular, Figure 2A shows that 95.0% of
people have 18 or more of the 29 Group A chemicals, provided
that exceeding the LOD constitutes presence of a chemical. On
the other hand, 95.0% of people have 7 or fewer of the Group A
chemicals when exceeding the 90th percentile indicates presence.
When the threshold is set at the 50th percentile, 91.8% of people
have 17 or fewer of the Group A chemicals. Similarly, Figure 2B
reveals that 97.1% of people have 24 or more of the 37 Group B
chemicals when the LOD is the discretization threshold; 93.6% of
people have 9 or fewer Group B chemicals when using the 90th
percentile as the discretization threshold; and 93.6% of people
have 25 or fewer Group B chemicals when using the 50th percen-
tile as the discretization threshold. Finally, Figure 2C shows that
95.6% of people have 22 or more of the 40 Group C chemicals
when discretizing presence using the LOD; 94.2% of people have
9 or fewer Group C chemicals when discretizing using the 90th
percentile; and 94.2% of people have 23 or fewer Group C chemi-
cals when discretizing using the 50th percentile. In summary, the

Figure 2. Histograms indicating proportions of the U.S. population for which a given number of National Health and Nutrition Examination Survey
(NHANES) chemicals from (A) Group A, (B) Group B, or (C) Group C are present. As indicated by the legend, three different discretization thresholds were
applied to determine whether a chemical was present in a given person. Thus, there are three histograms in each panel: for the histogram indicated by circles, a
chemical was considered to be present if the observed concentration was at or above the limit of detection (LOD); for the histogram indicated by squares, a
chemical was considered to be present if the concentration was above the 50th percentile measurement; and for the histogram indicated by triangles, a chemical
was considered to be present if the concentration was above the 90th percentile measurement.
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results illustrated in Figure 2 agree with expectations: As the
threshold for presence of each individual chemical is increased,
the number of chemicals present in the largest proportion of peo-
ple decreases.

General Findings for NHANES Chemical Combinations
The total number of prevalent combinations that will be identified
by an FIM algorithm depends on two tuning parameters: the dis-
cretization threshold (expressed as a percentile), and the mini-
mum prevalence level. In Figure 3, we used the results of
frequent itemset mining of NHANES 2009–2010 Group A chem-
ical data to illustrate how the number of prevalent chemical com-
binations tends to vary with these two parameters. We emphasize
that in this particular FIM application, minimum prevalence level
(or minimum support) signifies a lower bound on the percentage
of individuals in the U.S. population for which all the chemicals
in a given chemical combination are present. Figure 3 uses a sur-
face plot to convey information about numbers of prevalent chem-
ical combinations from Group A, while Figure 4 uses contour
plots to provide comparable information for all three groups (A,
B, and C) of chemicals. The primary finding illustrated by Figure
3 and Figure 4 is that by increasing the values of either or both of
the two aforementioned tuning parameters (the threshold for
presence in an individual and the minimum prevalence in the pop-
ulation) we decrease the number of prevalent chemical combina-
tions. Furthermore, if one wishes to prioritize a known fixed
number of combinations for toxicity testing, surface or contour
plots such as those shown in Figure 3 and Figure 4 can be used to
select the tuning parameters and thus to establish the degree of
prevalence of the combinations to be tested.

Figure 5, Figure 6, and Figure 7 depict maximal prevalent
combinations and supercombinations for the NHANES 2009–

2010 chemical groups A, B, and C, respectively. In all cases, we
set the discretization thresholds at the 50th percentiles. This is a
convenient threshold choice because median exposure estimates
for many chemicals are readily available (Wambaugh et al. 2013;
Wambaugh et al. 2014). To determine the maximal prevalent
combinations, we chose different prevalence levels for each
group such that the total number of these combinations fell
between 20 and 40. This produced lists of prevalent combinations
that could be represented at a reasonable resolution in the afore-
mentioned figures. To identify supercombinations, we searched
for the largest number of chemicals that occurred in at least two
NHANES subjects.

Group A Combinations
For Group A, there are 25 maximal prevalent combinations when
the minimum prevalence level is 30%. These combinations,
which are represented in rows 1–25 of the presence–absence map
in Figure 5, each contain two or three chemicals. Note that each
column in the figure corresponds to one of the Group A chemi-
cals, and a dark cell indicates the presence of a chemical in a
given combination. Note also that the right label of each row
gives the proportion of represented U.S. residents in which the
combination occurs. The last row in the presence–absence map
of Figure 5 depicts a supercombination consisting of 24 of the 29
Group A chemicals. This combination occurred in 3 Subsample
A subjects, and based on the weights of those subjects, we con-
cluded that it occurs in 324,107 (or 0.13%) of 258,281,689 repre-
sented U.S. residents.

Prevalent combinations of Group A chemicals included com-
binations of just metals, combinations of metals and polyatomic
ions, and combinations of phytoestrogens. For example, several
binary combinations of metals appear to occur in at least 30% of

Figure 3. Surface plot illustrating how the number of prevalent combinations of National Health and Nutrition Examination Survey (NHANES) 2009–2010
Group A chemicals decreases as the chemical concentration discretization threshold and the minimum prevalence level are increased. Here we have used the
distributions (or more specifically, certain percentiles) of concentration measurements for individual chemicals to set thresholds for “significant” chemical ex-
posure. For example, a value of 50 on the “discretization threshold” axis implies that a chemical was considered to be present in any subjects for which the
concentration exceeded the median, or 50th percentile, concentration for that chemical. It is also important to note that the values for the surface plot were com-
puted by a) computing the number (or count) of prevalent combinations containing at least two elements, b) adding one to this value, and then c) taking the
base 10 logarithm of the result. Because of a), we exclude from consideration combinations of chemicals consisting of just one chemical. By performing b),
we ensure that all counts are greater than zero so that c) will not fail. Importantly, due to the way we constructed the subject-chemical databases, we can inter-
pret the minimum prevalence level as the minimum percentage of the U.S. population that will test positive for a given combination (a subject is considered to
test positive for a combination when his/her concentrations of all chemicals in the combination exceed the chemical concentration discretization threshold).
Note that Figure 4A gives a contour plot representation of the same information contained in this surface plot, while Figures 5B and 5C give contour plots cor-
responding to NHANES 2009–2010 Group B and Group C chemicals, respectively.
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U.S. residents, including thallium and cesium (row 1 of Figure
5), barium and cobalt (row 2), tungsten and molybdenum (row
4), cadmium and lead (row 5), and lead and cesium (row 6).
Several combinations consisting of one metal and one small pol-
yatomic ion are also prevalent, including nitrate and cesium (row
3) and molybdenum and perchlorate (row 13). The combination
of O-desmethylangolensin, genistein, and daidzein (row 12)
occurs in about 31% of U.S. residents. Genistein and daidzein are
both phytoestrogens found naturally in soybeans and other plants,
whereas O-desmethylangolensin is a metabolite of daidzein
(Frankenfeld 2011).

Group B Combinations
Using a minimum prevalence level of 33%, we found 29 maximal
prevalent combinations of Group B chemicals. These combina-
tions, which each contain 2 to 4 chemicals, are depicted in rows
1–29 of Figure 6. In its last row, this figure depicts a supercombi-
nation consisting of 32 of the 37 Group B chemicals. The super-
combination occurred in two Subsample B subjects representing
137,261 (or 0.05%) of 272,911,633 U.S. residents.

Group B prevalent combinations included several assemblies
of PAH metabolites. For example, a combination of three metab-
olites of fluorene (row 23 of Figure 6) occurs in at least one-third
of U.S. residents, as does a combination of one pyrene metabolite
and two fluorene metabolites (row 29), several combinations of
fluorene and phenanthrene metabolites (rows 11, 16, 19, 21, 22,
and 24–27), and a combination of one naphthalene and one fluo-
rene metabolite (row 20). Another category of prevalent combi-
nations of Group B chemicals involved parabens. For example,
N-propyl paraben and methyl paraben (row 1 of Figure 6) co-
occur in about 43% of people, and N-propyl paraben and ethyl
paraben (row 13) co-occur in about 34% of people. Various bi-
nary combinations of phthalate metabolites also occur with high
frequency (see rows 2, 4, and 5).

Group C Combinations
Finally, for Group C, there are 36 maximal prevalent combina-
tions when the minimum prevalence level is 40%. The maximal
prevalent combinations, which each contain 2 to 3 chemicals, are
shown in the first 36 rows of the presence–absence map in Figure
7. The largest number of Group C chemicals occurring in at least
2 of the Subsample C subjects was 27 (out of 40), but we actually
found 9 different combinations of 27 chemicals that met this
requirement. The most prevalent of these (based on subject
weights) occurs in an estimated 479,033 (or 0.21%) of
226,021,580 represented U.S. residents, and is depicted in the
last row of Figure 7. Notably, all maximal prevalent combina-
tions identified from Group C consisted of caffeine, caffeine
homologs (e.g., theophylline and theobromine, which both occur

naturally in chocolate), and metabolites of these (i.e., Subgroup
C3). As human exposure to these particular chemicals is likely
intentional, we reanalyzed Group C chemicals after omitting data
on Subgroup C3. The results of this separate analysis are included
in Figure S1.

Reproducibility of Prevalent Combinations and
Demographic Considerations
For each of the maximal prevalent combinations that we identi-
fied in Groups A, B, and C using FIM, we computed the observed
prevalence in several groups, including the entire population rep-
resented by the corresponding NHANES subsample (generally,
all U.S. residents over age 6 y), all represented males, all repre-
sented females, all represented persons in certain age categories,
and all represented tobacco users (i.e., persons who would self-
identify as having recently used tobacco). We estimated observed
prevalence in the total represented population in two ways: a)
considering the weights of all subjects in the relevant subsample;
and b) considering the weights of all subjects in each of the four
randomly generated partitions of the subsample. For each
NHANES subsample, the number of subjects in each partition
and each demographic group is listed in Table 5. The observed
prevalence values for each chemical combination (cf. Figure 5,
Figure 6, and Figure 7) from each chemical group (A, B, and C)
are illustrated in the form of a heat map in Figure 8. Note that the
demographic group “Age 6 to 11” is not included in the heat map
for Group C chemical combinations. This is because NHANES
excluded subjects under the age of 12 from blood collection used
to measure serum concentrations of certain Group C chemicals
(cf. subsections “Subsamples and chemical groups” and “Age
restrictions and excluded data” of the “Methods” section).

The heat maps shown in Figure 8 indicate little variation in
observed prevalence when considering an entire subsample or
partitions thereof; i.e., the observed prevalence levels of the most
prevalent combinations in a given subsample are approximately
the same as those observed when considering a random subset of
this subsample. In contrast, when considering only persons aged
6 to 11 y, many of the group A combinations are far more preva-
lent (with observed prevalence levels approaching 90% in some
cases) than in the total population. Group A combination 5 is
much more prevalent in individuals aged greater than 65 than in
other demographic classes. Furthermore, all prevalent combina-
tions in Group A are slightly more prevalent in women than in
men.

Using minimum prevalence levels of 30%, 33%, and 40% for
Groups A, B, and C, respectively, we applied FIM to identify
prevalent combinations in each of the four partitions for each of
the NHANES subsamples (A, B, and C). We found that the aver-
age concordance percentages for sets of prevalent combinations

Figure 4. Contour plots illustrating how the number of prevalent combinations of National Health and Nutrition Examination Survey (NHANES) 2009–2010
(A) Group A, (B) Group B, and (C) Group C chemicals decreases as the chemical concentration discretization threshold and the minimum percentage of the
U.S. population required to test positive for a given combination are increased (cf. caption of Figure 3).
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(identified in partitions of the subsamples) for Groups A, B, and
C were 72.1%, 88.0%, and 83.9%, respectively. That is, on aver-
age, between 12.0% and 27.9% of combinations found to be prev-
alent when analyzing partition i were not found to be prevalent
when analyzing partition j . This typically occurred, however,
when a combination had an observed prevalence in the second
partition (j) that fell just below the nominal threshold (e.g., 30%
minimum prevalence level for Group A combinations). When we
relaxed the minimum prevalence level of the second partition (j)
by two percentage points (e.g., to 28% for Group A combina-
tions), we found that the average concordance percentages were
91.7%, 97.7%, and 97.7% for Groups A, B, and C, respectively.
More detailed statistics concerning this reproducibility study are
reported in Tables S4, S5, and S6.

Discussion
The 106 chemicals considered in the NHANES 2009–2010 bio-
monitoring data can be assembled to form nearly 1032 possible
chemical combinations, and it is highly unlikely that any research
entity could analyze such a large number of mixtures in a reason-
able time frame. Fortunately, our FIM analyses illustrates that the
number of prevalent combinations is much less than this. We

conclude, therefore, that our approach can be used to identify rel-
evant chemical combinations for bioactivity testing. That is, our
FIM-based method could be applied as a first step in prioritizing
chemical mixtures for further investigation. To apply the method
described here, however, some important decisions must be made
concerning the interpretation of biomonitoring data. In particular,
one must choose discretization thresholds so that continuous
measures of concentration can be converted into presence–ab-
sence information.

Other approaches for unsupervised machine learning (i.e., the
identification of clusters within data) exist, such as ensemble
learning methods based on random forests (Shi and Horvath
2006). In considering NHANES data, such methods would offer
the ability to use continuous biomarker concentrations rather
than discretized presence–absence information. One complica-
tion, however, is that many machine learning methods require
synthesis of a data set from a reference distribution (Shi and
Horvath 2006); given the large number of chemicals in each
subset and the skewed population distributions, such a data set
may be difficult to construct. FIM is particularly well suited for
identifying chemical combinations for toxicity testing because
it allows explicit specification of the desired prevalence of
combinations. Other clustering methods, such as random

Figure 5. Presence–absence map (black indicates present) illustrating 25 maximal prevalent combinations of Group A chemicals (rows 1 through 25) and one
supercombination consisting of 24 of the 29 chemicals in Group A (row 26). The maximal prevalent combinations were identified using frequent item set min-
ing (FIM) with discretization thresholds set at the 50th percentiles and a minimum prevalence level of 30%. The supercombination occurred in 3 Subsample A
subjects, representing a total of 324,107 (or 0.13%) of 258,281,689 represented U.S. residents. National Health and Nutrition Examination Survey (NHANES)
codes along the top of the figure indicate Group A chemicals, and these are organized into subgroups A1, A2, A3, and A4. The observed prevalence number at
the right of each row indicates the proportion of U.S. residents in which the given combination was observed to occur.
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forest classification, do not inherently consider whether a given
cluster is common in the sample analyzed. FIM is also deter-
ministic: regardless of the FIM algorithm, the combinations
identified and prevalence of those combinations within the data
is an objective feature of the data itself.

While it has some limitations, NHANES provides a rich
source of information on actual chemical exposures and coexpo-
sures experienced by people. As evidence of this, we applied
FIM to NHANES 2009–2010 data and discovered 90 chemical
combinations prevalent in U.S. residents. We discuss several no-
table chemical combinations that were produced by our FIM
analysis as case studies below.

Discretization Options
Most biomonitoring data consist of continuous quantitative mea-
sures of chemical concentrations that must be simplified to either
present or absent at a significant level to be processed via FIM.
To perform this discretization for NHANES data, we used per-
centiles from the observed chemical concentration distributions
as thresholds, but these thresholds are somewhat arbitrary from
the standpoint of risk. Ideally, the threshold for presence of a
given chemical would be a critical concentration, or point of de-
parture (POD), associated with potential toxicity. This approach

would not provide a perfect solution, however, as PODs for indi-
vidual chemicals do not take into account possible interactive
effects of chemicals within mixtures (Carpenter et al. 1998).
Furthermore, POD thresholds are typically determined in terms of
in vivo doses (e.g., in animals such as rats) or in vitro concentra-
tions (e.g., in high-throughput screening assays), rather than blood
or urine concentrations. While it may make sense to compare ana-
lyte concentrations in blood directly with POD thresholds deter-
mined in vitro, additional work would be needed to compare such
concentrations with in vivo doses. For example, one could use tox-
icokinetic models [see, e.g., the models of Pearce et al. (2016)] to
convert POD oral doses into internal plasma concentrations, and
then use the latter as discretization thresholds when examining
blood analyte concentrations. Comparing urine analyte concentra-
tions to POD thresholds is even more complicated. Toxicokinetic
models can help again, perhaps, by allowing one to reverse engi-
neer feasible doses based on known urine concentrations (Mage
et al. 2004; Tan et al. 2007). Alternatively, one could derive con-
centration thresholds that are biomonitoring equivalents of existing
reference doses or other screening criteria (Hays et al. 2007). In
this case, too, toxicokinetic models are needed. Detailed toxicoki-
netic models based on extensive empirical data are limited to a rel-
atively small number of chemicals [e.g., bisphenol A (Vandenberg
et al. 2010)], and will therefore not completely address the current

Figure 6. Presence–absence map (black indicates present) illustrating 29 maximal prevalent combinations of Group B chemicals (rows 1 through 29) and one
supercombination consisting of 32 of the 37 chemicals in Group B (row 30). The maximal prevalent combinations were identified using frequent item set min-
ing (FIM) with discretization thresholds set at the 50th percentiles and a minimum prevalence level of 33%. The supercombination occurred in 2 Subsample B
subjects, representing a total of 137,261 (or 0.05%) of 272,911,633 represented U.S. residents. National Health and Nutrition Examination Survey (NHANES)
codes along the top of the figure indicate Group B chemicals, and these are organized into subgroups B1, B2, B3, and B4. The observed prevalence number at
the right of each row indicates the proportion of U.S. residents in which the given combination was observed to occur.
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needs. New high-throughput toxicokinetic models based on fewer
chemical specific parameters (e.g., hepatic clearance rate and
plasma protein binding affinity) provide a solution for several hun-
dred chemicals (Pearce et al. 2016; Rotroff et al. 2010;

Wetmore et al. 2012; Wetmore et al. 2013; Wetmore et al.
2014), but such models are not yet available for all the chemicals
included in NHANES biomonitoring. Thus, we emphasize the
need to prioritize experimental work that provides toxicokinetic
parameter values for NHANES chemicals.

Limitations and Strengths of NHANES Biomonitoring
Data
NHANES provides the richest available data set for internal
human chemical exposures; however, NHANES biomonitoring
data do have a number of limitations. First of all, not all chemi-
cals are measured in all people, and this makes it difficult to dis-
cover co-occurrence patterns for chemicals from different groups.
Also, due to the age thresholds established for collecting urine
and blood specimens, NHANES has very limited biomonitoring
data for children, who tend to be especially susceptible to the
toxic effects of chemicals (Wattigney et al. 2007). Another issue
is that many chemicals measured in NHANES have short half-
lives in humans, and thus, it may be difficult to draw conclusions
about the true prevalence of chemical exposures based on the sur-
vey’s spot urine samples. In the context of chemical risk prioriti-
zation, one of the most important shortcomings of NHANES

Figure 7. Presence–absence map (black indicates present) illustrating 36 maximal prevalent combinations of Group C chemicals (rows 1 through 36) and one
supercombination consisting of 27 of the 40 chemicals in Group C (row 37). The maximal prevalent combinations were identified using frequent item set min-
ing (FIM) with discretization thresholds set at the 50th percentiles and a minimum prevalence level of 40%. The supercombination occurred in 2 Subsample C
subjects, representing a total of 479,033 (or 0.21%) of 226,021,580 represented U.S. residents. NHANES codes along the top of the figure indicate Group C
chemicals, and these are organized into subgroups C1, C2, C3, and C4. The observed prevalence number at the right of each row indicates the proportion of
U.S. residents in which the given combination was observed to occur.

Table 5. Summary of information concerning partitioning and demographics
for each of the National Health and Nutrition Examination Survey (NHANES)
2009–2010 subsamples.

Category Subsample A Subsample B Subsample C

All 2,741 2,736 2,132
Partition 1 685 684 533
Partition 2 685 684 533
Partition 3 686 684 533
Partition 4 685 684 533
Male 1,359 1,392 1,026
Female 1,382 1,344 1,106
Age 6 to 11 363 411 0
Age 12 to 19 436 417 348
Age 20 to 65 1,507 1,501 1,387
Age 66 or more 316 295 282
Tobacco use 1,653 1,596 1,504

Note: The numbers of subjects listed only reflect those subjects which met the criteria
described in “Methods” section. That is, some NHANES 2009–2010 subjects were
omitted from consideration because they did not meet age requirements for certain labo-
ratory analyses or because chemical concentration information was incomplete.
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biomonitoring data is that they cover only a small fraction of
the approximately 84,000 chemicals on the TSCA inventory
(Institute of Medicine 2014; U.S. Government Accountability
Office 2013) to which humans are potentially exposed (Carpenter
et al. 1998; Weschler 2009). Because of this, the prevalent com-
binations we identified by applying FIM to currently available
NHANES data are unlikely to represent the complete spectrum
of chemical mixtures present in humans. Established NHANES
laboratory analysis protocols only provide concentration meas-
ures for a relatively small, predefined list of targeted chemi-
cals; nontargeted screening approaches (Rager et al. 2016), on
the other hand, may eventually allow us to identify more of the
chemical species that actually exist in human urine and blood
samples. Closing the gap between the few hundred chemicals
that have been included in NHANES and the tens of thousands
of chemicals potentially present in humans will allow us to fully
realize the prioritization potential of the FIM techniques described
herein. Despite these various limitations, NHANES offers the best
currently available source of data on human exposure to environ-
mental chemicals. In particular, NHANES utilizes a large represen-
tative sample of U.S. residents and considers several hundred
chemicals to provide information on actual internal exposures
experienced by people.

Case Studies
Here we highlight several prevalent chemical combinations
named in the “Results” section. Our FIM analysis of Group A
chemicals, for example, identified cadmium and lead as a preva-
lent combination (cf. row 5 of Figure 5). These two metals have
been found to co-occur in well water (Sanders et al. 2014), so
drinking water might prove to be important exposure vehicles
for mixtures of these metals. Using analyses of various munici-
pal and private drinking water supplies, one might therefore
derive relative proportions of cadmium and lead that form rele-
vant mixtures.

The isoflavones daidzein and genistein, along with the daid-
zein metabolite O-desmethylangolensin, form another prevalent
combination from Group A (cf. row 12 of Figure 5). The two par-
ent isoflavones occur together in fruits and nuts (Liggins et al.
2000a) and in vegetables (Liggins et al. 2000b), and are both
especially abundant in soybeans, which are a prominent ingredi-
ent in many foods consumed by Americans (Barrett 2006). Thus,
it is not surprising that FIM identified daidzein and genistein as a
prevalent chemical combination in U.S. residents. In order to
identify a specific mixture of these isoflavones for bioactivity
testing, one could use their relative proportions in commonly
consumed soy-derived foods [see, e.g., USDA 2008 database for

Figure 8. Heat maps indicating the observed prevalence of chemical combinations within various partitions and demographic subpopulations. The enumer-
ated combinations for Groups A, B, and C are identical to the enumerated prevalent combinations that are provided in Figure 5, Figure 6, and Figure 7,
respectively.
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the isoflavone content] together with consumption rates for these
foods to estimate human doses. High-throughput toxicokinetics
could then be applied to arrive at relevant internal (blood plasma)
mixture proportions.

FIM produces several prevalent combinations of PAHs,
which make up one of the subgroups of Group B chemicals (cf.
Subgroup B4 in Figure 6 and Table 2). Due to the high rate of
co-occurrence of certain PAH metabolites in urine samples, we
infer that fluorene frequently co-occurs with pyrene, phenan-
threne, and naphthalene in humans. Being products of the incom-
plete combustion of organic materials, PAHs frequently occur
together in tobacco smoke (International Agency for Research on
Cancer 2004), but they may also co-occur in foods (Zelinkova
and Wenzl 2015). Thus, it can be challenging to identify a defi-
nite exposure vehicle for combinations of PAHs; nevertheless, it
may be possible by examining the specific PAHs that co-occur.
For example, in one study researchers found that 1-, 2-, and 3-
hydroxyfluorenes and 2-hydroxynaphthalene are more closely
correlated with tobacco smoke exposure than 1-hydroxypyrene
and hydroxyphenanthrenes (St. Helen et al. 2012).

From Combinations to Mixtures
FIM allows for the extraction of prevalent combinations of chem-
icals from biomonitoring data sets, but more work is required to
explicitly define mixtures of concern that can be tested. One pos-
sible approach (as discussed in the case studies above) would be
to perform exposure reconstruction; that is, by identifying likely
exposure vehicles (e.g., water or food sources) for chemicals, one
can examine the relative proportions of the chemicals in those ex-
posure vehicles. Another approach is to use toxicokinetic models
to infer the concentrations in target tissues that are implied by
biomarker data (both urine and blood). Toxicokinetics can also
inform exposure reconstruction, since biomarker concentrations
will depend on chemical affinity for tissues (e.g., lipophilicity)
and half-life within the body. Depending on the rate at which a
given chemical is cleared from the body, the presence of a bio-
marker may be impacted by many different exposure events, dif-
ferent pathways of exposure (e.g., diet vs. product use), and even
legacy concentrations inherited from one’s mother at birth (Tan
et al. 2007).

Prevalence vs. Correlation
Other researchers have sought to identify correlations in chemical
exposures (Patel and Manrai 2015), and even correlations
between chemical exposures and adverse health outcomes (Bell
and Edwards 2015; Patel et al. 2010), but here we have focused
on developing a method for the identification of chemical combi-
nations based on their prevalence in humans. To illustrate the dis-
tinction, consider hypothetical chemicals X and Y. Suppose that
the exposure patterns (and consequently the biomarker levels) of
X and Y are highly correlated for those subjects in which both
chemicals occur, but that X and Y only co-occur in a small frac-
tion of the population. In this case, the combination X and Y is
not a prevalent combination, and it would not be identified by
our method.

One might still wonder whether identified chemical combina-
tions rise to a threshold prevalence level purely because of the
high prevalence of their individual constituents or if the preva-
lence of a combination implies some degree of correlation in the
levels of these constituents. We argue that because we have used
discretization thresholds set at the 50th percentile concentrations
and minimum prevalence levels of at least 30% in all of our anal-
yses, the prevalent combinations identified herein suggest consid-
erable correlations (or nonindependence) of the levels of the

individual chemicals involved. Take, for example, any prevalent
combination of two chemicals. Since both of the chemicals occur
(above the 50th percentile level) in no more than 50% of the pop-
ulation, the maximum expected prevalence of the combination,
assuming independence, would be 0:52 = 0:25, i.e., if there is no
correlation, we would expect that no more than 25% of people
have the combination. Because this prevalent combination was
identified by specifying a minimum prevalence level of 30% (or
more), however, we know that the actual prevalence was more
than 30%, which is substantially more than the 25% (or less)
expected based on assumptions of independence. It therefore fol-
lows that prevalent combinations do indeed indicate correlations
in the occurrence of their constituents.

An advantage of the exposome globe of Patel and Manrai
(2015) is that it provides a powerful and compact visual of the
correlations identified in NHANES. However, because this vis-
ual is constructed from pairwise correlations, it is difficult to dis-
cern co-occurrence patterns that go beyond binary associations.
Our approach explicitly provides prevalence rates for combina-
tions of varying order. Furthermore, while it is useful to mine
exposure–effect relationships from NHANES data, we suggest
that examining the toxicities of prevalent mixtures (such as those
identified using FIM) using high-throughput screening assays
and other toxicological assessments would provide more com-
plete information on the effects of the most relevant mixtures.

Reproducibility of Prevalent Combinations
The first five columns of each heat map in Figure 8 provide a
visual indication of the degree to which the FIM algorithm is
robust in determining the prevalence level of chemical combi-
nations in the NHANES biomonitoring data. The near uniform-
ity of color (which represents observed prevalence) across these
first five columns (which correspond to analysis of all subjects
and just those subjects in each of the four partitions) in each
case (A, B, and C) indicates that prevalence levels are approxi-
mately the same when analyzing the entire subsample or just a
subset of the subsample. This provides evidence that the
method is robust.

To quantify the reproducibility of the sets of prevalent combi-
nations, we reapplied FIM to four randomly generated partitions
of each NHANES subsample and found that, on average,
between 72.1% and 88.0% of combinations identified as prevalent
using one partition (i) are also identified as prevalent when using
another partition (j) of the same subsample. These average con-
cordance percentages increase to between 91.7% and 97.7%
when the minimum prevalence level for the second partition (j) is
decreased by two percentage points from that used in analyzing
the first partition (i). This higher range for the average concord-
ance percentages demonstrates that much of the discrepancy in
the sets of prevalent combinations identified in two partitions
within the same subsamples occurs when the actual prevalence of
some combinations is quite close to (i.e., just above or just below)
the nominal minimum prevalence level. In these cases, sampling
variability will lead to a determination that the combination is
prevalent when analyzing some partitions but not others.

Demographic Considerations
The right-most columns of each heat map in Figure 8 provide in-
formation about the prevalence within various demographic
groups of those combinations identified as prevalent in the overall
population. Using the left-most five columns (which, as described
above, tend to have similar color/intensity in a given row) as a vis-
ual control reference point, one can identify demographic groups
for which prevalence of the corresponding combination varies
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markedly from that observed the overall population. For example,
combination 5 in Group A, which consists of cadmium and lead,
appears to be considerably less prevalent in persons from 6 to 19
y of age than in the overall population; however, this same com-
bination appears to be considerably more prevalent in persons
aged 66 and older. With the exception of combinations 5 and 10,
most of the Group A combinations tend to have higher prevalence
in persons aged 6 to 11 y. This is also true for 9 of the 29 Group B
combinations. It is important to note that NHANES measured all
Group A and Group B chemical concentrations in urine, so funda-
mental differences in the clearance rates or urine chemistry of
younger people could potentially confound the interpretation of
apparent demographic differences implied by Figure 8.

Conclusions
In the real world, people are exposed to mixtures rather than
individual chemicals, so there is a need to identify relevant
mixtures that can be assessed for toxicity. To precisely describe
such mixtures, we must first identify the specific combinations
of chemicals of which they are composed. Although the number
of possible combinations that can be formed from the tens of
thousands of chemicals in the environment is practically infi-
nite, the number of prevalent combinations of these chemicals
is much smaller. We have presented here a novel application of
FIM to NHANES biomonitoring data and demonstrated how
this approach can be utilized to yield a manageable number of
prevalent chemical combinations.
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