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Abstract

Motivation: A major aim of single cell biology is to identify important cell types such as stem cells

in heterogeneous tissues and tumors. This is typically done by isolating hundreds of individual

cells and measuring expression levels of multiple genes simultaneously from each cell. Then, clus-

tering algorithms are used to group together similar single-cell expression profiles into clusters,

each representing a distinct cell type. However, many of these clusters result from overfitting,

meaning that rather than representing biologically meaningful cell types, they describe the intrinsic

‘noise’ in gene expression levels due to limitations in experimental precision or the intrinsic ran-

domness of biochemical cellular processes. Consequentially, these non-meaningful clusters are

most sensitive to noise: a slight shift in gene expression levels due to a repeated measurement will

rearrange the grouping of data points such that these clusters break up.

Results: To identify the biologically meaningful clusters we propose a ‘cluster robustness score’:

We add increasing amounts of noise (zero mean and increasing variance) and check which clusters

are most robust in the sense that they do not mix with their neighbors up to high levels of noise.

We show that biologically meaningful cell clusters that were manually identified in previously pub-

lished single cell expression datasets have high robustness scores. These scores are higher than

what would be expected in corresponding randomized homogeneous datasets having the same

expression level statistics. We believe that this scoring system provides a more automated way to

identify cell types in heterogeneous tissues and tumors.

Contact: tomer.kalisky@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single cell technologies can measure gene expression from multiple

genes in hundreds or thousands of individual cells (Dalerba et al.,

2011; Hashimshony et al., 2016; Jaitin et al., 2014; Klein et al.,

2015; Macosko et al., 2015; Treutlein et al., 2014; Villani et al.,

2017; Zeisel et al., 2015). A major aim of single cell biology is

to identify and characterize important cell subpopulations in hetero-

geneous biological systems such as a developing embryo, a regener-

ating tissue, or a tumor. For example, an embryo contains multiple
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types of stem and progenitor cell populations that create, through

carefully regulated interactions, the various lineages that are

required for forming properly functioning organs (Chen et al., 2015;

Guo et al., 2010; La Manno et al., 2016; Swiers et al., 2013;

Treutlein et al., 2014). Similar processes continue throughout the

lifetime of the fully developed organism, where many tissues contain

small populations of ‘tissue-specific stem cells’ that are responsible

for normal tissue turnover and regeneration (Barker et al., 2007;

Lyubimova et al., 2013; Montgomery et al., 2011; Sangiorgi and

Capecchi, 2008; Shackleton et al., 2006; Spangrude et al., 1988;

Stingl et al., 2006). Similarly, it has been shown that many types of

tumors are driven by small populations of ‘cancer stem cells’ that

are thought to sustain the tumor through their ability of self-renewal

and pluripotency (Al-Hajj et al., 2003; Bonnet and Dick, 1997;

Bussolati et al., 2008; Dalerba et al., 2007; Li et al., 2007; Pode-

Shakked et al., 2009, 2013; Prince et al., 2007; Singh et al., 2004).

Although these rare cell populations have a large effect on the over-

all behavior of the system, they are difficult to identify and charac-

terize since they often consist of a small fraction (often less than

1%) of the tissue/tumor, and are therefore likely to be ‘averaged

out’ in bulk gene expression measurements. Therefore, single cell

measurements are required.

In a typical single-cell workflow, the tissue or tumor is dissoci-

ated into individual cells, and the expression levels of multiple genes

are measured in each cell (Fan et al., 2015; Picelli et al., 2014;

Sanchez-Freire et al., 2012; Sheng et al., 2017). The resulting single

cell expression dataset typically consists of a matrix in which each

row (or column) represents an individual cell and each column (or

row) represents a specific gene. Then, clustering algorithms are used

to identify groups (¼clusters) of cells with similar gene expression

profiles, where each such group represents a distinct cell type such

as a stem cell, a progenitor cell, or a more differentiated cell type

with a specialized function. Likewise, it is possible to use clustering

algorithms to identify groups of genes with similar expression pat-

terns, which might point to a functional relationship between them

(e.g. a common transcriptional activator).

Single cell analysis results in hundreds or thousands of data

points, each being a vector of expression levels measured from

multiple genes in an individual cell. The objective of clustering

analysis is to form groups of data points such that the distances

(or more generally, ‘dissimilarities’) between data points within each

group are smaller than the distances between data points from different

groups (Kaufman and Rousseeuw, 1990). The dissimilarity dði; jÞ be-

tween two data points i and j is usually calculated from the Euclidean

distance or from the correlation between them.

One approach often used for single cell datasets is agglomerative

hierarchical clustering (Dalerba et al., 2011; Guo et al., 2010, 2013;

Rothenberg et al., 2012; Treutlein et al., 2014). The agglomerative

hierarchical clustering algorithm constructs a hierarchy of clusters

‘bottom-up’ (Fig. 1A): Initially, each data point is considered a separ-

ate cluster. Then, in each step of the algorithm, the two most similar

clusters are merged (such that the number of clusters is decreased by

one) and the distance between the new set of clusters is recalculated.

The distance between two clusters can be calculated, for example, by

taking the average of all pair-wise dissimilarities dði; jÞ, where i is a

data point in one cluster and j is a data point in the other (average

linkage). The algorithm proceeds until all clusters are merged into a

single cluster encompassing all data points. The hierarchical relations

between the clusters can be described by a dendrogram (Fig. 1A).

Given N data points, (e.g. cells), the above algorithm creates

N � 1 hierarchically arranged clusters. However, many of these

clusters do not represent biologically meaningful groups of cells.

For example, the grouping of data points at the bottom of the den-

drogram (the leaves) is in many cases a result of ‘overfitting’: These

points are often so close to each other that the relative distances be-

tween them are heavily affected by measurement noise (the uncer-

tainty in experimental precision) or by biological noise (the inherent

randomness in biochemical cellular processes). This means that the

differences in distances between these points—that determines

which points are grouped with each other by the clustering

algorithm—are irrelevant to the classification of different cell types.

Consequentially, these non-meaningful clusters are sensitive to

noise: A slight change in gene expression levels from a repeated

measurement or a replicate sample will change the relative distances

between data points and rearrange the clusters such that points that

belonged to the same cluster will now belong to two separate clus-

ters (Fig. 1B). The same may also happen at higher hierarchies. For

example (Fig. 1C), a cluster that is almost equally distanced from

two other clusters is not robustly grouped to any one of them. A

slight change in gene expression of a single data point may regroup

this cluster with a different neighboring cluster.

In order to identify biologically meaningful cell populations we

propose to use robustness analysis to calculate a ‘robustness score’

for each cluster: We add increasing amounts of noise (zero mean

and progressively increasing variance) and check which clusters are

most robust, in the sense that they do not get ‘mixed-up’ with their

neighbors. Our hypothesis is that biologically meaningful clusters

will keep their composition under progressively increasing levels of

noise and will, therefore, receive high robustness scores. We demon-

strate this method by identifying robust cell subpopulations from

previously published single cell gene expression datasets for which

the cell subpopulation repertoire is relatively well understood

(Björklund et al., 2016; Dalerba et al., 2011; Patel et al., 2014;

Rothenberg et al., 2012).

2 Materials and methods

2.1 Calculation of cluster robustness scores
Going from the root of the dendrogram to the leaves, each branch-

ing point divides a single cluster into two sub-clusters (Fig. 2A). Let

us focus on one arbitrarily chosen branching point (Fig. 2A, arrow)

and label its sub-clusters (as well as the data points within them) as

‘A’ and ‘B’. The general aim of the clustering algorithm is to assign

the labels ‘A’ and ‘B’ in an optimal way, such that the distance be-

tween data points having the same label (e.g. the distance between

‘A’ and ‘A’) is smaller than the distance between data points having

different labels (the distance between ‘A’ and ‘B’). We propose to

test how robust to noise is the optimality of this partitioning to sub-

clusters ‘A’ and ‘B’ at each branching point.

One way to evaluate the optimality of a cluster is the ‘Silhouette’

score (Kaufman and Rousseeuw, 1990; Rousseeuw, 1987), which

compares the average ‘inner’ distance within the cluster to the aver-

age ‘outer’ distance between the cluster and its closest neighbors

(Fig. 2B). The Silhouette score can be calculated as follows: For each

data point i belonging to a specific cluster ‘A’, we can calculate a ið Þ,
which is the average dissimilarity between data point i to all other

data points belonging to the same cluster (in our case, all data points

labeled ‘A’). We next calculate the average dissimilarity between

data point i to all other data points belonging to any other cluster.

We recalculate this for all other clusters and take the minimum,

which we define as bðiÞ. Thus, bðiÞ is the minimal averaged distance

from data point i to the closest neighboring cluster (which in our

case is cluster ‘B’).
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The Silhouette score for data point i is: S ið Þ ¼ b ið Þ�ð
aðiÞÞ=maxfa ið Þ;bðiÞg and is bound between -1 and 1. S ið Þ ¼ 1 means

that point i has been appropriately assigned into cluster ‘A’, since

its average distance to points in any other cluster (in particular,

those belonging to the neighboring cluster ‘B’) is much larger than

its average distance to other points within ‘A’. S ið Þ � 0 implies that

it is not clear whether data point i has been appropriately assigned

to cluster ‘A’, since the average distance to cluster ‘B’ is not much

larger than the average distance to cluster ‘A’. S ið Þ ¼ �1 indicates

that data point i has been ‘miss-classified’ as belonging to cluster

‘A’, and that it would have been much more appropriate to assign

it to cluster ‘B’. To calculate the Silhouette score of a whole clus-

ter, we average the silhouette score over all its members, for

example, the Silhouette score of cluster ‘A’ is the average of SðiÞ
over all points i that belong to cluster ‘A’ (S ¼ SðiÞ

� �
i2A

). A tightly

grouped cluster in which all data points are close to each other and

are far from points of neighboring clusters will have a high

Silhouette score (Fig. 2B).

Fig. 1. Hierarchical clustering of single cell gene expression datasets identifies biologically meaningful clusters representing distinct cell types (or gene families),

as well as numerous non-meaningful clusters that result from overfitting. The later are non-robust to noise. (A) A sketch of the agglomerative hierarchical cluster-

ing procedure: At first, each data point (representing a gene expression profile from an individual cell) is considered a separate cluster (‘1’, ‘2’, ‘3’, . . .). Then, in

each step of the algorithm, the two closest clusters are merged and the distance between all clusters is recalculated. The process continues until all clusters are

merged into a single cluster containing all data points. In parallel, a dendrogram is constructed to represent the relationships between the different clusters. In

the illustrated example, clusters ‘1’ and ‘2’ are merged first to create the cluster ‘1-2’, then ‘4’ and ‘5’ are merged into cluster ‘4-5’, then point ‘3’ is merged with

cluster ‘1-2’ to create cluster ‘1-2-3’ etc. (B) Clusters at the base of the dendrogram such as ‘4-5’ and ‘7-8’ are in many cases a result of overfitting and do not repre-

sent distinct cell phenotypes. In this example, data points 4, 5, 7, 8 are so close to each other such that the differences in distances between them are below the

precision of the measurement apparatus or the inherent biochemical variation of the gene expression mechanism and are not due to an actual difference in cell

type. A repeated measurement might result in points ‘5’ and ‘7’ being slightly displaced such that the clustering algorithm will rearrange clusters ‘4-5’ and ‘7-8’

into ‘4-7’ and ‘5-8’. Therefore, clusters ‘4-5’ and ‘7-8’ are non-robust to noise. However clusters ‘1-2-3’ and ‘4-5-7-8-6’ are much more robust to noise since the dis-

tances between them are large and a much larger noise displacement is required to move any data point from one cluster to the other. (C) Overfitting may also af-

fect higher hierarchies. In this example clusters ‘1-2-3’, ‘4-5-6’ and ‘7-8’ are almost equidistant from each other such that the differences between their distances

are below the precision of the measurement apparatus or the intrinsic biochemical noise. A slight displacement of data point ‘7’ results in separating cluster ‘4-5-

6’ from cluster ‘1-2-3-4-5-6’ and joining it with cluster ‘7-8’ to create cluster ‘4-5-6-7-8’. A similar displacement may reverse this process. Thus, cluster ‘1-2-3-4-5-6’

is non-robust since a small random displacement of one data point may cause it to disappear. However, clusters ‘1-2-3’, ‘4-5-6’ and ‘7-8’ will not be affected and

are therefore more robust
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At any given branching point of the dendrogram, the partition-

ing of data points into sub-clusters ‘A’ and ‘B’ should be optimal

such that the Silhouette measure S of sub-cluster ‘A’ (and also sub-

cluster ‘B’) will be maximized. Thus, for an optimal partitioning

into subclusters, the labels ‘A’ and ‘B’ cannot be randomly shuffled:

Any mixing of the labels ‘A’ and ‘B’ (by randomly interchanging

labels ‘A’ and ‘B’ between pairs of data points from the two clusters)

will result in smaller Silhouette values, i.e. SR < S for any label-

mixing realization R (Fig. 2C). We hypothesize that in clusters that

are most biologically meaningful this optimality will be most robust

to noise, i.e. S will remain higher than SR even in the presence of

large noise.

An addition of noise will randomly ‘spread out’ the coordinates of

data points ‘A’ and ‘B’, resulting in larger inner distances and smaller

outer distances (Fig. 2D). This will result in lower Silhouette meas-

ures. The Silhouette measure S of cluster ‘A’ (or cluster ‘B’) with noise

will be lower than without it, i.e. S rð Þ < S for any additive

(Gaussian) noise with zero mean and variance r2. Therefore, in order

Fig. 2. Calculation of cluster robustness scores. (A) Each branching point of the dendrogram, such as the one pointed to by an arrow in the illustrated example,

represents a cluster being optimally partitioned into two sub-clusters, here labeled as ‘A’ and ‘B’. The aim of the clustering algorithm is to assign the labels ‘A’

and ‘B’ such that the distance between all data points having the same label (e.g. ‘A’ and ‘A’) is smaller than the distance between data points having different

labels (‘A’ and ‘B’). (B) The Silhouette measure for cluster optimality compares the average ‘inner’ distance within the cluster (a) to the average ‘outer’ distance

between the cluster and its closest neighbors (b). A tightly grouped cluster in which all data points are close to each other and are far from data points in neigh-

boring clusters (b � a) will have a high Silhouette score S. (C) For an optimal cluster, any mixing of the labels ‘A’ and ‘B’ (by randomly interchanging labels ‘A’

and ‘B’ between pairs of data points from the two clusters) will result in smaller Silhouette values, i.e. SR < S for any label-mixing realization R. (D) Addition of

noise with zero mean and variance r2 will generally ‘spread out’ the coordinates of points ‘A’ and ‘B’, resulting in larger inner distances within a cluster, smaller

outer distances between different clusters, and reduced Silhouette scores, i.e. S rð Þ < S. (E) Although increased noise will reduce the Silhouette score SðrÞ, the

most robust clusters will retain their optimality (S rð Þ > SR ðrÞ) up to high levels of noise (r). We define the cluster robustness score as the maximal noise standard

deviation rmax such that S rð Þ > SR ðrÞ (for a pre-determined fraction of label shuffling realizations R)
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to evaluate the cluster robustness to noise, we will check how much

noise can be added such that its Silhouette score S remains higher

than SR (Fig. 2E). For robust clusters, S will remain larger than SR

even for large levels (¼variance) of noise. More formally, for each

branching point we are actually testing for the null hypothesis that the

labels ‘A’ and ‘B’ can be randomly shuffled, and checking if this null

hypothesis can be rejected under increasing levels of additive noise.

We propose the following procedure (Fig. 2E): At each branch-

ing point of the dendrogram, we first calculate S for both cluster ‘A’

and cluster ‘B’ (with respect to each other). Then, for each cluster

(‘A’ and ‘B’, independently) we compare S to the values SR resulting

from randomly shuffling the labels ‘A’ and ‘B’ multiple times. Then,

we add Gaussian noise with zero mean and progressively increasing

levels of variance (r2), recalculate SðrÞ and SRðrÞ for multiple real-

izations of label-shuffling R, and check the fraction of instances (i.e.

label shuffling realizations R) for which the specific labeling of A’s

and B’s remains optimal, i.e. S rð Þ > SRðrÞ. The most robust clusters

will remain optimal for higher levels of noise r. Therefore, for each

cluster, we define the cluster robustness score as the maximal noise

standard deviation (rmax) such that S rð Þ > SRðrÞ in more than some

predetermined fraction of label shuffling realizations R. This frac-

tion is taken to be 1-p_threshold, where the more label-shuffling

realizations R taken, the lower p_threshold can be set. We typically

used p_threshold¼0.05 and 100 label-shuffling realizations R, but

we found similar results for other values as well (p_thresh-

old¼0.005, 0.01, 0.1; 1000 label-shuffling realizations R).

For single-cell expression datasets we used the Pearson correl-

ation distance or Euclidean distance as the dissimilarity measure be-

tween data points. The Pearson correlation distance is calculated as

follows: if i and j are vectors of expression levels of multiple genes

from two individual cells, then the dissimilarity between them is:

d i; jð Þ ¼ 1� corrði; jÞ. For calculating the distance between two clus-

ters we took the average of all pair-wise dissimilarities between

them (average linkage), for example, the distance between clusters

‘A’ and ‘B’ is: d A;Bð Þ ¼ 1= Aj jjBj
� �P

i2A; j2B dði; jÞ, or Ward’s

method (Kaufman and Rousseeuw, 1990). We provide a program

written in Matlab (2016b) for performing our scoring procedure

(Supplementary Material), as well as results from simulated data

(Supplementary Material).

We tested the cluster robustness scores of biologically meaning-

ful cell sub-populations that were previously identified by manual

inspection of single cell gene expression datasets.

3 Results

We first tested our cluster scoring scheme on three simulated data-

sets (see Supplementary Material). Then, we tested our method on

two published single cell qPCR datasets (Dalerba et al., 2011;

Rothenberg et al., 2012) and two published single-cell RNA-seq

datasets (Björklund et al., 2016; Patel et al., 2014).

3.1 Example no. 1: A single cell qPCR dataset from a

mouse colon epithelium
In a previous study, a combination of multicolor flow cytometry

and microfluidic single cell qPCR was used to identify different cell

types within the mouse colon crypt (Rothenberg et al., 2012).

Briefly, colon epithelial cells from mice were dissociated and isolated

by FACS, and then a few hundreds of single cells from the base of

the crypt were profiled by microfluidic multiplex qPCR according to

a panel of pre-selected genes from the literature. Single cell gene

expression values were standardized and hierarchical clustering was

performed (Fig. 3A). By manual inspection of the clustering heatmap

and dendrogram, five major cell populations were observed, each

representing a different cell type or transcriptional state (Rothenberg

et al., 2012). The cell populations were labeled as follows:

• Bmi1-high/Lefty1-high cells (Sub-population A): Cells mostly

expressing high levels of the genes BmI1, Lefty1 and Gapdh, and

mostly lacking immature cell markers (Lgr5, Axin2) and Goblet

cell markers (Muc2, Spdef).
• Mature enterocytes (Sub-population B): Expressing high levels of

Slc26a3 and Krt20.
• Goblet cells (Sub-population C): Expressing high levels of Spdef,

Muc2, Agr2 and Tff3.
• Immature cells (Sub-population D): Containing cells expressing

high levels of genes known to be over-expressed in the crypt-

base, such as Cftr, Notch1, Axin2 and Ascl2. This cell popula-

tion contains an additional sub-population of Lgr5-high cells

(Sub-population E) that contains nearly all cells over-expressing

the gene Lgr5 which is the putative stem cell marker for the colon

epithelium.

We first calculated the Silhouette scores for all clusters (Fig. 3B).

For each cluster, the Silhouette score was calculated relative to its

nearest neighboring cluster originating from the same branching point.

We found that there is a large bias with respect to cluster size such

that even small meaningless clusters have large Silhouette scores. We

next calculated the cluster robustness scores (rmax) for each cluster

(Figs 3C and D) and found that the biologically meaningful cell subpo-

pulations—those identified by manual inspection—typically have high

robustness scores. Note that although small clusters tend to have

higher Silhouette values, they also have a larger dispersion of SR values

for different label-mixing realizations R (Fig. 3D).

We next checked if clusters of comparable robustness also ap-

pear in corresponding ‘homogeneous’ tissue with similar gene ex-

pression statistics. We therefore ‘homogenized’ the dataset as

follows: We randomly permuted the gene expression values of each

gene separately among the different cells (i.e. randomly permute the

values in each column in Fig. 3A). In this way we removed the cross-

correlations between different genes while conserving the overall

distribution of each gene. As a result, cell subpopulations that are

characterized by families of coordinately expressed genes in the het-

erogeneous tissue are lost. We found that the cluster robustness

scores in the ‘homogenized’ dataset are considerably lower

(Fig. 3C). In particular, most biologically meaningful clusters in the

original dataset have higher robustness values than clusters of com-

parable size in the homogenized dataset.

We obtained similar results for single cell qPCR data from the

human colon (see Supplementary Fig. S4 and Supplementary Material).

3.2 Example no. 2: A single cell RNA sequencing

dataset from innate lymphoid cells (ILCs)
To demonstrate our cluster robustness measure on single cell RNA

sequencing data, we downloaded single cell RPKM values from sev-

eral hundreds of individual tonsil CD127þ Innate Lymphoid Cells

(ILC’s) and natural killer (NK) collected by Björklund et al. (2016).

After preprocessing (Supplementary Fig. S5), we obtained a gene ex-

pression matrix of 311 highly variable genes from 300 cells

(Macosko et al., 2015) (Fig. 4A). In this dataset, four known cell

populations (ILC1, ILC2, ILC3 and NK cells) were isolated by flow

cytometry using surface markers. mRNA from individual cells was

sequenced and all single-cell expression profiles were analyzed together.

We find that the clusters that correspond to the four well-known

cell populations (ILC1, ILC2, ILC3 and NK cells) have high cluster
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Fig. 3. Biologically meaningful cell sub-populations from a previously published mouse colon epithelium single cell qPCR dataset (Rothenberg et al., 2012) have

high cluster robustness scores. (A) Hierarchical clustering of single cell gene expression measurements from 161 individual cells isolated from the bases of

mouse colon crypts and profiled by microfluidic single cell qPCR as previously described (Rothenberg et al., 2012). Each column represents a gene and each row

represents a cell. Each column (¼gene) was standardized by subtracting the mean, dividing by 3 times the standard deviation, and truncating to the range [-1, 1].

Manual inspection reveals 5 biologically meaningful cell sub-populations (Red—over-expression, green—under-expression, gray—no expression). (B) Cluster

Silhouette scores are highly biased with respect to cluster size, such that even meaningless clusters of small size may have high Silhouette values. (C)

Biologically meaningful cell sub-populations typically have high cluster robustness scores that are higher than expected for clusters of similar size in a corre-

sponding ‘homogenized’ dataset. Shown is the cluster size versus cluster robustness score (rmax ) for all clusters in the single cell gene expression dataset (*,

blue) and its ‘homogenized’ counterpart (x, red). The ‘homogenized’ dataset was obtained by randomly permuting the values of each column (¼gene), such that

all cell subpopulations characterized by families of coordinately expressed genes are lost but the overall expression level distribution of each gene is conserved.

(D) Calculation of robustness scores for selected clusters. Shown is the Silhouette score S (o, blue) and the label-mixed Silhouette score SR (x, red) as a function

of noise with increasing variance r2. Robust clusters retain their optimality (S > SR ) for higher values of noise (r). Note that small clusters tend to have higher

Silhouette values and a larger dispersion of SR values (for different label-mixing realizations R). Clustering was done with Pearson correlation distance and aver-

age linkage. Cluster Silhouette scores were calculated using Pearson correlation distance. We used p_threshold¼0.05 and 100 label-shuffling realizations R

(though the results did not change significantly for 1000 label-shuffling realizations)
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robustness scores (Fig. 4C). We find additional putative sub-clusters

with relatively high robustness scores (ILC3-A and B, ILC1 CCL5þ
and CCL5-), which might represent a finer partition of the four

major well-known populations. Note that a subpopulation of

CCL5-producing ILC1 cells was previously identified in the small in-

testine by Gury-BenAri et al. (2016).

3.3 Example no. 3: A single cell RNA sequencing

dataset from glioblastoma
We tested our method on a second single cell RNA sequencing data-

set from 430 cells from five primary glioblastomas collected by Patel

et al. (2014), using TPM values that were calculated by Townes

et al. (2017). After preprocessing (Supplementary Fig. S6), we

Fig. 4. Biologically meaningful cell sub-populations from a previously published single-cell RNA sequencing dataset of Innate Lymphoid Cells (ILCs) have high

cluster robustness scores. (A) Hierarchical clustering of single cell gene expression measurements from 300 individual cells isolated from human tonsil tissue

and profiled by the Smart-seq2 single cell RNA sequencing protocol (Björklund et al., 2016). After choosing 311 highly variable genes (see Supplementary Fig. S5

and Supplementary Material) and performing a log-plus-one transformation, each gene (¼column) was standardized by subtracting the mean, dividing by the

standard deviation and truncating to the range [-1, 1] (Red—over-expression, green—under-expression, gray—no expression). The clustering distinguishes be-

tween the four known cell populations (ILC1, ILC2, ILC3 and NK cells) that were defined by surface markers and isolated using flow cytometry. Manual inspection

reveals additional putative sub-populations (ILC3-A and B, ILC1 CCL5þ and CCL5-). (B) Cluster Silhouette scores are highly biased with respect to cluster size,

such that even meaningless clusters of small size may have high Silhouette values. (C) The four known cell populations (ILC1, ILC2, ILC3 and NK cells), as well as

the putative cell subpopulations (e.g. ILC1 CCL5þ) have high cluster robustness scores (*, blue) that are higher than expected for clusters of similar size in a corre-

sponding ‘homogenized’ dataset (x, red). (D) Calculation of robustness scores for selected clusters. Shown is the Silhouette score S (o, blue) and the label-mixed

Silhouette score SR (x, red) as a function of noise with increasing variance r2. Robust clusters retain their optimality (S > SR ) for higher values of noise (r). Small

clusters tend to have higher Silhouette values and a larger dispersion of SR values (for different label-mixing realizations R). Clustering was done with Euclidean

distance and Ward’s linkage. Cluster Silhouette scores were calculated using Euclidean distance. We used p_threshold¼0.05 and 100 label-shuffling realizations R
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obtained a gene expression matrix of 708 highly variable genes from

430 cells (Macosko et al., 2015) (Fig. 5A). In the original publica-

tion for this dataset the authors found that the five tumors (labeled

MGH26, MGH28, MGH29, MGH30 and MGH31) were transcrip-

tionally distinct from each other. Moreover, they found two subsets

of cells that differed from the rest: A large subpopulation of cycling

cells expressing genes typical to the G2/M phase of the cell cycle,

and a subset of Oligodendrocytes, mostly from the MGH31 tumor.

We find that the clusters that correspond to the five tumors have

high cluster robustness scores, as well as the cycling (G2/M) cells

and Oligodendrocytes (Fig. 5C). Notice that the combined cluster

(MGH31þOligodendrocytes) has a low robustness score (Fig. 5D).

Fig. 5. Biologically meaningful cell sub-populations from a previously published single-cell RNA sequencing dataset of primary glioblastomas have high cluster

robustness scores. (A) Hierarchical clustering of single cell gene expression measurements from 430 individual cells isolated from five human glioblastoma

patients that were profiled by the Smart-seq single cell RNA sequencing protocol (Patel et al., 2014). After choosing 708 highly variable genes (see

Supplementary Fig. S6 and Supplementary Material) and performing a log-plus-one transformation, each gene (¼column) was standardized by subtracting the

mean, dividing by the standard deviation and truncating to the range [-1, 1] (Red—over-expression, green—under-expression, gray—no expression). The cluster-

ing distinguishes between the five tumors (MGH26, MGH28, MGH29, MGH30 and MGH31), and identifies two additional cell types: cycling (G2/M) cells and

Oligodendrocytes. Manual inspection reveals additional putative sub-populations within tumor MGH28 (MGH28-A, B and C). (B) Cluster Silhouette scores are

highly biased with respect to cluster size, such that small meaningless clusters have high Silhouette values. (C) The clusters representing the five tumors, cycling

(G2/M) cells, Oligodendrocytes and the additional putative sub-populations within tumor MGH28, have high cluster robustness scores (*, blue) that are higher

than expected for clusters of similar size in a corresponding ‘homogenized’ dataset (x, red). (D) Calculation of robustness scores for selected clusters. Shown is

the Silhouette score S (o, blue) and the label-mixed Silhouette score SR (x, red) as a function of noise with increasing variance r2. Robust clusters retain their opti-

mality (S > SR ) for higher values of noise (r). Small clusters tend to have higher Silhouette values and a larger dispersion of SR values (for different label-mixing

realizations R). Notice that the combined cluster (MGH31þOligodendrocytes, red triangle) has a low robustness score. Clustering was done with Euclidean dis-

tance and Ward’s linkage. Cluster Silhouette scores were calculated using Euclidean distance. We used p_threshold¼0.05 and 100 label-shuffling realizations R
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Likewise, we identify three additional putative sub-populations

within tumor MGH28 (MGH28-A, B and C).

4 Discussion

Single cell RNA sequencing datasets have unique properties that re-

quire specialized preprocessing steps. Low transcript capture efficien-

cies that are typical in mRNA sequencing technologies result in large

fractions of ‘dropout’ events, i.e. false zero measurements.

Furthermore, the large dimensionality of these datasets requires dimen-

sion reduction steps prior to clustering and visualization. Methods for

estimating and recovering dropout events include MAGIC (van Dijk

et al., 2018) and DrImpute (Gong et al., 2018). Another approach is

used in ZIFA (Pierson and Yau, 2015), which performs dimension re-

duction while assuming a global dropout rate parameter, and VAMF

(Townes et al., 2017), which assumes cell-specific dropout rates.

Linnorm (Yip et al., 2017) performs normalization and transformation

of scRNA-seq data, based on parameters that are calculated on a sub-

set of genes that are homogeneously expressed across different cells.

SIMLR (Wang et al., 2017) is an algorithm that learns the similarity

measure that best splits the data into a predefined number of clusters.

This similarity measure can then be used as an input to dimension re-

duction, visualization and clustering algorithms. We believe that our

cluster robustness scoring method can complement and dovetail nicely

with the above algorithms.

Generally, there are two main strategies for clustering (Kaufman

and Rousseeuw, 1990): partitioning algorithms and hierarchical

algorithms. Partitioning algorithms try to partition N data points

into k distinct groups in the best possible way. Usually, these algo-

rithms require the user to provide an additional parameter such as

the number of clusters k. Examples include k-means and k-medoids

(Kaufman and Rousseeuw, 1990) [Note that other partitioning algo-

rithms such as DBSCAN (Ester et al., 1996), Mean-shift (Cheng,

1995), or Affinity propagation (Frey and Dueck, 2007) require the

user to select other parameters instead]. Hierarchical algorithms

construct clusters in the form of a hierarchical tree that splits the N

data points into smaller and smaller clusters until a single point is

reached. Since hierarchical clustering imposes a tree structure on the

data, it is sometimes more appropriate for applications in biology, for

example to describe the evolutionary relations between organisms

originating from a common ancestor or the hierarchy of differentiating

cell types and sub-types originating from a common stem cell.

Furthermore, hierarchical clustering algorithms require less external

parameters to be optimized by the user, for example, they go over all

possibilities for the number of clusters (k¼1,. . ., N) in a single run.

However, it remains for the user to correctly interpret the results by

identifying the clusters that represent biologically meaningful cell types

from all the clusters produced by the algorithm (this is sometimes

referred to as the problem of finding the ‘termination condition’).

In this study we addressed this problem by adding Gaussian

noise and using the Silhouette measure to calculate a ‘robustness

score’ for each cluster. The Silhouette measure (Rousseeuw, 1987)

was originally developed as a scoring system to evaluate the quality

of clusters resulting from partitioning algorithms and to assist the

user in selecting the optimal number of clusters k. However, the

Silhouette measure S is biased in the sense that small clusters can

have large Silhouette measures even when they are non-meaningful

(See Figs 3–5B, and simulations in Supplementary Material), which

makes it somewhat difficult to identify the most biologically mean-

ingful clusters. Therefore, we took a different approach: We added

noise with increasing variance r2 and measured the level of noise

that can be added such that clusters remain well separated, in the

sense that their Silhouette score S remains higher than the label-

shuffled Silhouette score SR. The maximal variance is a measure of

the cluster robustness to noise. We found that this measure is consid-

erably less biased with respect to cluster size (Figs 3–5C and simula-

tions in Supplementary Material).

Our underlying assumption is that biologically meaningful cell

subpopulations are represented by clusters that have a high robust-

ness to additive noise. On the other hand, clusters that have no real

meaning, i.e. those that were formed due to over-fitting, have low

robustness. We also assume that in ‘homogenized’ single cell expres-

sion data—when the expression values of each gene are randomly

permuted such the mutual relations between the different genes van-

ish—there are no biologically meaningful cell types. Thus, the

cluster robustness score provides us with a semi-automated way to

discern between meaningful and non-meaningful clusters that can

complement manual inspection of the data and assist in identifica-

tion and characterization of cell types in tissues and tumors.

One limitation of our method is that it will work only when the

Silhouette measure is appropriate for measuring the quality of a clus-

ter, as in the case of clusters that are roughly ball-shaped. Another

limitation is the run time. The algorithm can run for �30min on a

standard PC for �100 cells and 100 label-randomizing iterations,

which can make scaling up to many thousands of cells infeasible. This

can be mitigated by performing less label-randomizing iterations or by

optimizing the range and number of noise intensities (r) to be tested.

Another possibility is to perform robustness analysis on selected

clusters of interest rather than on all the clusters as we did here.
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